Lockheed Martin to Produce Eighth THAAD Battery for the US Government
April 21, 2022 | Lockheed MartinEstimated reading time: 1 minute

Lockheed Martin has received a contract totaling $74 million to produce the Terminal High Altitude Area Defense (THAAD) Weapon System for the Missile Defense Agency (MDA). The award amount covers the production of an eighth THAAD battery for the U.S. government. It’s expected to be fielded by 2025.
“This award demonstrates the U.S. government’s continued confidence in the THAAD Weapon System and in its unique endo- and exo-atmospheric defense capability,” said Dan Nimblett, Vice President of Upper Tier Integrated Air and Missile Defense at Lockheed Martin Missiles and Fire Control. “With 16 of 16 successful flight test intercepts and recent combat success clearly documenting the effectiveness of THAAD, adding an eighth battery will further enhance readiness against existing and evolving ballistic missile threats.”
The first THAAD Battery (Alpha Battery, 4th Air Defense Artillery Regiment, 11th Air Defense Artillery Brigade) was activated in May 2008 and the seventh THAAD battery was activated by the U.S. Army in December 2016.
THAAD is a highly effective, combat-proven defense against short, medium and intermediate-range ballistic missile threats. THAAD is the only U.S. system designed to intercept targets outside and inside the atmosphere. The system uses Hit-to-Kill technology to destroy a threat with direct impact neutralizing lethal payloads before they reach protected assets on the ground. THAAD continues incremental capability improvements within the weapon system to continually improve capability against current and emerging threats.
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
MES Software Tools Need Thoughtful Integration
10/21/2025 | Nolan Johnson, SMT007 MagazineThe Global Electronics Association recently published a survey report on the state of EMS production software. This project, led by Thiago Guimaraes, director of industry intelligence, connects the dots across the global electronics value chain to uncover practical insights that individual companies might not have seen on their own. In this interview, Thiago discusses the whys and hows of this report.
Light-curable Solutions for Reliable Electronics in Space Applications
10/15/2025 | Virginia Hogan, DymaxDesigning electronics for space environments, particularly those in low Earth orbit (LEO), requires careful consideration of materials that can withstand extreme conditions while supporting long-term reliability. Engineers designing satellite systems, aerospace instrumentation, and high-altitude platforms face a familiar set of challenges: contamination control, mechanical stress, thermal cycling, and manufacturability.
Analog Devices Launches ADI Power Studio™ and New Web-Based Tools
10/14/2025 | Analog Devices, Inc.Analog Devices, Inc., a global semiconductor leader, announced the launch of ADI Power Studio, a comprehensive family of products that offers advanced modeling, component recommendations and efficiency analysis with simulation. In addition, ADI is introducing early versions of two new web-based tools with a modernized user experience under the Power Studio umbrella:
Elementary, Mr. Watson: High Power: When Physics Becomes Real
10/15/2025 | John Watson -- Column: Elementary, Mr. WatsonHave you ever noticed how high-speed design and signal integrity classes are always packed to standing room only, but just down the hall, the session on power electronics has plenty of empty chairs? It's not just a coincidence; it's a trend I've observed over the years as both an attendee and instructor.
Beyond Thermal Conductivity: Exploring Polymer-based TIM Strategies for High-power-density Electronics
10/13/2025 | Padmanabha Shakthivelu and Nico Bruijnis, MacDermid Alpha Electronics SolutionsAs power density and thermal loads continue to increase, effective thermal management becomes increasingly important. Rapid and efficient heat transfer from power semiconductor chip packages is essential for achieving optimal performance and ensuring long-term reliability of temperature-sensitive components. This is particularly crucial in power systems that support advanced applications such as green energy generation, electric vehicles, aerospace, and defense, along with high-speed computing for data centers and artificial intelligence (AI).