Siemens Collaborates with GlobalFoundries to Provide Trusted Silicon Photonics Verification
May 19, 2022 | SiemensEstimated reading time: 2 minutes
Siemens Digital Industries Software announced that its Calibre nmPlatform now enables designers to leverage the newest GlobalFoundries (GF) silicon photonics platform. GF’s next generation, monolithic platform, GF Fotonix is the first in the industry to combine its differentiated 300mm photonics and RF-CMOS features on a silicon wafer, delivering best-in-class performance at scale.
The GF Fotonix process design kits (PDKs) include Siemens’ Calibre nmDRC software for design rule checking (DRC) and Calibre® nmLVS software for layout vs. schematic (LVS) verification. Both Calibre tools are fully certified by GF, so mutual customers designing for the new GF Fotonix platform can continue to use the trusted Calibre nmPlatform for silicon photonic devices as they have used for previous offerings.
“Siemens EDA is pleased to extend our mutual solution with GF into the emerging silicon photonics market,” said Michael Buehler-Garcia, vice president of Calibre Design Solutions product management. “While silicon photonic designs and their subsequent inclusion into multi-die offerings introduce new verification complexities, these complexities are addressed in the Calibre silicon photonics design kits, which require no change to how designers traditionally use Calibre.”
GF Fotonix consolidates complex processes that were previously distributed across multiple chips onto a single chip by combining a photonic system, radio frequency (RF) components and high-performance complementary metal–oxide–semiconductor (CMOS) logic on just one silicon chip.
“Our collaboration with Siemens EDA is another example of how GF is partnering with industry leaders to deliver innovative, time-to-market solutions for our customers,” said Mike Cadigan, senior vice president for Customer Design Enablement, GF. “The combination of Siemens’ Calibre tools, for both design verification and post tape-out operation, with the GF Fotonix solution, can help designers efficiently create the powerful, flexible, and power-efficient solutions required in today’s next-generation datacenter, computing, and sensing applications.”
Silicon photonics enables companies to bring fiber optics directly into integrated circuits. However, silicon photonic devices contain curved layouts, rather than the linear Manhattan grid features found in traditional CMOS designs. Applying traditional CMOS DRC to silicon photonic layouts yields numerous false positive errors that design teams must often spend weeks tracking down. To address this challenge, GF leverages Siemens’ Calibre eqDRC™ software, which allows rule checks to use equations in place of, or in addition to, linear measurements. This helps enable more accurate results, leading to significantly fewer errors, so design teams can spend far less time and fewer resources debugging their designs.
Similarly, the curvilinear nature of photonic structures, together with the general lack of source netlists for optics, poses a challenge when performing LVS checking. Traditional IC LVS technology extracts physical measurements from well-understood electronic structures and compares them to the intended corresponding elements in the source netlist. However, with curved structures it is difficult, if not impossible, to discern where one structure begins and another ends. With the new GF Fotonix PDK with Calibre LVS, this obstacle is resolved with the use of text and marker layers to discern regions of interest.
Silicon photonic devices are often implemented in an individual die on a specific process node, then stacked and packaged with the rest of design components in multiple dies using advanced heterogeneous packaging technologies. By using the complete core Calibre offering, total verification cycle times can be greatly reduced.
Suggested Items
Real Time with... IPC APEX EXPO 2025: Aster–Enhancing Design for Effective Testing Strategies
04/18/2025 | Real Time with...IPC APEX EXPOWill Webb, technical director at Aster, stresses the importance of testability in design, emphasizing early engagement to identify testing issues. This discussion covers the integration of testing with Industry 4.0, the need for good test coverage, and adherence to industry standards. Innovations like boundary scan testing and new tools for cluster testing are introduced, highlighting advancements in optimizing testing workflows and collaboration with other tools.
Real Time with... IPC APEX EXPO 2025: Emerging Trends in Design and Technology
04/16/2025 | Real Time with...IPC APEX EXPOAndy Shaughnessy speaks with IPC design instructor Kris Moyer to discuss emerging design trends. They cover UHDI technology, 3D printing, and optical data transmission, emphasizing the importance of a skilled workforce. The role of AI in design is highlighted, along with the need for understanding physics and mechanics as designs become more complex. The conversation concludes with a focus on enhancing math skills for better signal integrity.
Electronic System Design Industry Posts $4.9 Billion in Revenue in Q4 2024
04/15/2025 | SEMIElectronic System Design (ESD) industry revenue increased 11% to $4,927.3 million in the fourth quarter of 2024 from the $4440.9 million reported in the fourth quarter of 2023, the ESD Alliance, a SEMI Technology Community, announced in its latest Electronic Design Market Data (EDMD) report.
Connect the Dots: Involving Manufacturers Earlier Prevents Downstream Issues
04/17/2025 | Matt Stevenson -- Column: Connect the DotsIf you have read any of my earlier columns, you know I am passionate about helping designers design for the reality of manufacturing. Designing for manufacturability (DFM) is a team sport. DFM is a design process that looks forward to the manufacturing process and integrates with it so that manufacturing requirements and capabilities can be accurately reflected in the design work.
Global PCB Connections: The Next Wave of HDI PCBs– How Design Engineers Can Stay Ahead
04/17/2025 | Jerome Larez -- Column: Global PCB ConnectionsHigh density interconnect (HDI) printed circuit boards have come a long way from their origins as a niche technology for miniaturized applications. Today, HDI PCBs are at the forefront of innovation, driven by an insatiable demand for faster, smaller, and more powerful electronic devices. As consumer electronics, 5G infrastructure, and AI-driven systems advance, design engineers must stay ahead of the curve to ensure their PCB designs meet evolving industry demands.