-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueInventing the Future with SEL
Two years after launching its state-of-the-art PCB facility, SEL shares lessons in vision, execution, and innovation, plus insights from industry icons and technology leaders shaping the future of PCB fabrication.
Sales: From Pitch to PO
From the first cold call to finally receiving that first purchase order, the July PCB007 Magazine breaks down some critical parts of the sales stack. To up your sales game, read on!
The Hole Truth: Via Integrity in an HDI World
From the drilled hole to registration across multiple sequential lamination cycles, to the quality of your copper plating, via reliability in an HDI world is becoming an ever-greater challenge. This month we look at “The Hole Truth,” from creating the “perfect” via to how you can assure via quality and reliability, the first time, every time.
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
Plating on Silver: What’s Old is New Again
July 7, 2022 | Denis Jacques, Technic Inc.Estimated reading time: 2 minutes

About three decades ago, immersion silver, a nitrate-based process, gained a lot of market share in the world of PCB final finishes. More economical than ENIG, flat, solderable, and conductive, it had everything going for it—everything but corrosion resistance in a harsh environment, that is.
Champagne voids were also an issue, along with line reduction. But the worst drawback, the characteristic that made the part short over time, was creep corrosion. A build-up of copper sulfide salt that grows in contact with a sulfur-rich environment, heat, and moisture resulted in failures in the field. This was enough to scar the process for good.
The market today for silver as a final finish is pretty meager and therefore does not justify much research. Fortunately, there is an alternative immersion silver, originally developed for other applications, that has proven to be a reliable solution. Immersion silver is nitrate-free, slightly alkaline, and deposits a slow, pore-free pure silver deposit. I had a strong feeling that this process would be a solid alternative to nitrate-based chemistry, yielding the benefits without the drawbacks.
Work started about 10 years ago with this product, on a very limited basis, because as mentioned before, the interest in silver is just not there. One of our customers raised the fact that their silver was acting somehow galvanic, and some isolated lines were reduced. The customer works in the RF field, and this was a major issue for them. I offered to test this bath, feeling that it could be a solution to the problem.
We had nitrate-free silver, which builds up about 10–15 microinches of silver in five minutes, so we tried simple tests with it. To our surprise, it solved all their issues, and they became an instant customer for this silver. They had had ongoing champagne voids and line reduction issues, and this silver solved that for them.
Strong on that success, we made a few installations where those issues were identified. As I mentioned, the silver market was slow, and we did not push because we did not know of any corrosion benefit yet. The nitrate-based process can deposit up to 20–30 microinches in one minute, and for us, that is the main issue. We felt that thinner, pore-free silver had to be better than thicker, fast deposited silver.
We had in mind to do a side-by-side bench comparison of these two silvers. The nitrate base is still dominating the market and is also directly related to the minuscule market share of silver as a final finish. Then the pandemic hit, and I had a lot of free time to involve myself in that long-desired bench comparison study.
Some material manufacturers had begun to share their findings on 5G requirements and, based on the requirements of high-frequency PCBs, it looked like silver was the way to go. To make a long story short, high frequencies travel on the surface, and silver is practically as good as copper at precluding signal loss. Signal loss was the main problem for 5G applications as the component will stop working.
Compensating for insertion loss requires a more sophisticated material, or heat-resistant components, or signal boosters, all of which lead to higher costs to accommodate ENIG.
To read this entire article, which appeared in the June 2022 issue of PCB007 Magazine, click here.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Closing the Loop on PCB Etching Waste
09/09/2025 | Shawn Stone, IECAs the PCB industry continues its push toward greener, more cost-efficient operations, Sigma Engineering’s Mecer System offers a comprehensive solution to two of the industry’s most persistent pain points: etchant consumption and rinse water waste. Designed as a modular, fully automated platform, the Mecer System regenerates spent copper etchants—both alkaline and acidic—and simultaneously recycles rinse water, transforming a traditionally linear chemical process into a closed-loop system.
Driving Innovation: Depth Routing Processes—Achieving Unparalleled Precision in Complex PCBs
09/08/2025 | Kurt Palmer -- Column: Driving InnovationIn PCB manufacturing, the demand for increasingly complex and miniaturized designs continually pushes the boundaries of traditional fabrication methods, including depth routing. Success in these applications demands not only on robust machinery but also sophisticated control functions. PCB manufacturers rely on advanced machine features and process methodologies to meet their precise depth routing goals. Here, I’ll explore some crucial functions that empower manufacturers to master complex depth routing challenges.
Trouble in Your Tank: Minimizing Small-via Defects for High-reliability PCBs
08/27/2025 | Michael Carano -- Column: Trouble in Your TankTo quote the comedian Stephen Wright, “If at first you don’t succeed, then skydiving is not for you.” That can be the battle cry when you find that only small-diameter vias are exhibiting voids. Why are small holes more prone to voids than larger vias when processed through electroless copper? There are several reasons.
The Government Circuit: Navigating New Trade Headwinds and New Partnerships
08/25/2025 | Chris Mitchell -- Column: The Government CircuitAs global trade winds continue to howl, the electronics manufacturing industry finds itself at a critical juncture. After months of warnings, the U.S. Government has implemented a broad array of tariff increases, with fresh duties hitting copper-based products, semiconductors, and imports from many nations. On the positive side, tentative trade agreements with Europe, China, Japan, and other nations are providing at least some clarity and counterbalance.
How Good Design Enables Sustainable PCBs
08/21/2025 | Gerry Partida, Summit InterconnectSustainability has become a key focus for PCB companies seeking to reduce waste, conserve energy, and optimize resources. While many discussions on sustainability center around materials or energy-efficient processes, PCB design is an often overlooked factor that lies at the heart of manufacturing. Good design practices, especially those based on established IPC standards, play a central role in enabling sustainable PCB production. By ensuring designs are manufacturable and reliable, engineers can significantly reduce the environmental impact of their products.