Scientists Develop New Algorithm that May Provide Insights into Battery Corrosion
November 7, 2022 | Argonne National LaboratoryEstimated reading time: 4 minutes

Argonne researchers have created an automatic technique that can fill in gaps in X-ray data.
Putting together a jigsaw puzzle is a great activity for a rainy Sunday afternoon. But the somewhat more difficult process of quickly assembling 3D scientific jigsaw puzzles — atomic structures of different materials — has recently gotten a lot easier, thanks to new research that pairs high-powered X-ray beams with advanced computing methodologies.
Researchers at the U.S. Department of Energy’s (DOE) Argonne National Laboratory have developed a new technique that accelerates the solving of material structures from patterns uncovered in X-ray experiments. The technique allows researchers to study certain properties, such as corrosion or battery charging and discharging, in real time.
“With the kind of diffraction we’re doing, getting the phase information is a challenge; it’s like figuring out how all the pieces (of the jigsaw) fit together solely based on the colors you can see on each piece.” — Yudong Yao, Argonne National Laboratory.
The technique, called AutoPhaseNN, is based on a method called machine learning, which trains an algorithm on certain experimental data and then uses it to choose the most likely outcome of the current experiment. The data used in this case are created by shining ultrabright X-ray beams from Argonne’s Advanced Photon Source (APS) on a material and capturing the light as they bounce off, a process called diffraction. The APS is a DOE Office of Science user facility at Argonne.
New techniques are important as the APS is in the midst of a massive upgrade, which will increase the brightness of its X-ray beams by up to 500 times. This means that more data will be gathered more quickly once the upgraded APS comes online in 2024, and scientists will need a way to keep up with analysis of that data. Machine learning solutions such as AutoPhaseNN will be a vital part of the more rapid data analyses needed in the future at APS, as well as similar facilities around the globe.
AutoPhaseNN is an example of an ?“unsupervised” machine learning, which means that the computer algorithm learns from its own experience how to do a computation more accurately and efficiently, without having to be trained with labeled solutions that have already been figured out, a process which usually involves human intervention.
“This new algorithm is essentially able to solve what we call an inverse problem, going from the pieces of the puzzle to create the puzzle itself,” said Argonne computational scientist and group leader Mathew Cherukara, an author of the study. ?“In essence, we’re taking a set of observations and trying to identify the conditions that created them. Instead of solving the puzzle by iterating the process of trial and revision based on the prior knowledge, our algorithm assembles the puzzle from the broken pieces in a single step.”
Getting information about the structure of a material requires scientists to obtain information pertaining not only to the amplitude of the diffracted signal, but also its phase. However, the amplitude, or intensity, is the only part that can be directly measured.
Because the X-ray beams used to illuminate the sample are coherent — meaning they all share the same phase initially — whatever change to the phase occurs as a result of the diffraction can be mapped back to the sample itself, said Argonne nanoscientist and co-author Henry Chan.
“Phase retrieval is essential for understanding the structure — most of the relevant information is found in the phase,” said lead author Yudong Yao, an Argonne X-ray physicist at the time of this research.?“With the kind of diffraction we’re doing, getting the phase information is a challenge; it’s like figuring out how all the pieces fit together solely based on the colors you can see on each piece.”
For conventional, supervised neural networks to solve this inverse problem, the researchers would have had to pair ?“broken puzzles” with fully assembled examples so that the neural network could have something to train against. With an unsupervised neural network, the algorithm can learn to stitch together the puzzle from just the broken pieces. The resulting network is fast, accurate and (unlike conventional methods) capable of providing 3D images in real time to scientific users of facilities like the APS.
A paper based on the study, ?“AutoPhaseNN: unsupervised physics-aware deep learning of 3D nanoscale Bragg coherent diffraction imaging,” appeared in the June 3 online edition of NPJ Computational Materials. In addition to Cherukara and Yao, other authors include Argonne’s Henry Chan, Subramanian Sankaranarayanan, Prasanna Balaprakash and Ross Harder.
The work was funded by DOE’S Office of Science (Office of Basic Energy Sciences). This research used resources of the Center for Nanoscale Materials and Argonne Leadership Computing Facility, which are DOE Office of Science user facilities, and the Laboratory Computing Resource Center at Argonne.
Suggested Items
Specially Developed for Laser Plastic Welding from LPKF
06/25/2025 | LPKFLPKF introduces TherMoPro, a thermographic analysis system specifically developed for laser plastic welding that transforms thermal data into concrete actionable insights. Through automated capture, evaluation, and interpretation of surface temperature patterns immediately after welding, the system provides unprecedented process transparency that correlates with product joining quality and long-term product stability.
Smart Automation: The Power of Data Integration in Electronics Manufacturing
06/24/2025 | Josh Casper -- Column: Smart AutomationAs EMS companies adopt automation, machine data collection and integration are among the biggest challenges. It’s now commonplace for equipment to collect and output vast amounts of data, sometimes more than a manufacturer knows what to do with. While many OEM equipment vendors offer full-line solutions, most EMS companies still take a vendor-agnostic approach, selecting the equipment companies that best serve their needs rather than a single-vendor solution.
Keysight, NTT, and NTT Innovative Devices Achieve 280 Gbps World Record Data Rate with Sub-Terahertz for 6G
06/17/2025 | Keysight TechnologiesKeysight Technologies, Inc. in collaboration with NTT Corporation and NTT Innovative Devices Corporation (NTT Innovative Devices), today announced a groundbreaking world record in data rate achieved using sub-THz frequencies.
Priority Software Announces the New, Game-Changing aiERP
06/12/2025 | Priority SoftwarePriority Software Ltd., a leading global provider of ERP and business management software announces its revolutionary aiERP, leveraging the power of AI to transform business operations.
Breaking Silos with Intelligence: Connectivity of Component-level Data Across the SMT Line
06/09/2025 | Dr. Eyal Weiss, CybordAs the complexity and demands of electronics manufacturing continue to rise, the smart factory is no longer a distant vision; it has become a necessity. While machine connectivity and line-level data integration have gained traction in recent years, one of the most overlooked opportunities lies in the component itself. Specifically, in the data captured just milliseconds before a component is placed onto the PCB, which often goes unexamined and is permanently lost once reflow begins.