Self-powered, Printable Smart Sensors Could Mean Cheaper, Greener IoT
January 4, 2024 | Simon Fraser UniversityEstimated reading time: 2 minutes
Creating smart sensors to embed in our everyday objects and environments for the Internet of Things (IoT) would vastly improve daily life—but requires trillions of such small devices. Simon Fraser University professor Vincenzo Pecunia believes that emerging alternative semiconductors that are printable, low-cost and eco-friendly could lead the way to a cheaper and more sustainable IoT.
Leading a multinational team of top experts in various areas of printable electronics, Pecunia has identified key priorities and promising avenues for printable electronics to enable self-powered, eco-friendly smart sensors. His forward-looking insights are outlined in his paper published on Dec. 28 in Nature Electronics.
“Equipping everyday objects and environments with intelligence via smart sensors would allow us to make more informed decisions as we go about in our daily lives,” says Pecunia. “Conventional semiconductor technologies require complex, energy-intensity, and expensive processing, but printable semiconductors can deliver electronics with a much lower carbon footprint and cost, since they can be processed by printing or coating, which require much lower energy and materials consumption.”
Pecunia says making printable electronics that can work using energy harvested from the environment—from ambient light or ubiquitous radiofrequency signals, for example—could be the answer.
“Our analysis reveals that a key priority is to realize printable electronics with as small a material set as possible to streamline their fabrication process, thus ensuring the straightforward scale-up and low cost of the technology,” says Pecunia. The article outlines a vision of printed electronics that could also be powered by ubiquitous mobile signals through innovative low-power approaches—essentially allowing smart sensors to charge out of thin air.
“Based on recent breakthroughs, we anticipate that printable semiconductors could play a key role in realizing the full sustainability potential of the Internet of Things by delivering self-powered sensors for smart homes, smart buildings and smart cities, as well as for manufacturing and industry.”
Pecunia has already achieved numerous breakthroughs towards self-powered printable smart sensors, demonstrating printed electronics with record-low power dissipation and the first-ever printable devices powered by ambient light via tiny printable solar cells.
His research group at SFU’s School of Sustainable Energy Engineering focuses on the development of innovative approaches to eco-friendly, printable solar cells and electronics for use in next-generation smart devices.
Pecunia notes that the semiconductor technologies being developed by his group could potentially allow the seamless integration of electronics, sensors, and energy harvesters at the touch of a ‘print’ button at single production sites—thereby reducing the carbon footprint, supply chain issues and energetic costs associated with long-distance transport in conventional electronics manufacturing.
“Due to their unique manufacturability, printable semiconductors also represent a unique opportunity for Canada,” he says. “Not only to become a global player in next-generation, eco-friendly electronics, but also to overcome its reliance on electronics from faraway countries and the associated supply chain and geo-political issues.
“Our hope is that these semiconductors will deliver eco-friendly technologies for a future of clean energy generation and sustainable living, which are key to achieving Canada’s net-zero goal.”
Suggested Items
PCB Design Software Market Expected to Hit $9.2B by 2031
11/21/2024 | openPRThis report provides an overview of the PCB design software market, detailing key market drivers, challenges, technological advancements, regional dynamics, and future trends. With a projected compound annual growth rate (CAGR) of 13.4% from 2024 to 2031, the market is expected to grow from USD 3.9 billion in 2024 to USD 9.2 billion by 2031.
IPC Issues Clarion Call for EU to Reclaim Leadership in Electronics Manufacturing
11/21/2024 | IPCIPC released a synopsis of its recent white paper, Securing the European Union’s Electronics Ecosystem. This condensed document presents a comprehensive overview of the current challenges in Europe’s electronics manufacturing industry and shares actionable steps to help the EU achieve a stronger, more autonomous ecosystem.
IPC Celebrates National Apprenticeship Week with a Focus on Electronics Manufacturing Excellence
11/19/2024 | IPCIPC, a leading global electronics industry association and source for industry standards, training and advocacy, is proud to announce its participation in National Apprenticeship Week, scheduled for November 17-23, 2024.
IPC Introduces First Standard for In-Mold Electronics
11/18/2024 | IPCIPC announces the release of IPC-8401, Guidelines for In-Mold Electronics. IPC-8401 addresses in-mold electronics (IME) technology, providing industry consensus on guidelines for manufacturing processes, part structures, material selection, and production test methods to integrate printed electronics and components into 3D smart structures.
Disruptive Innovation and Generative AI Inventor, Kevin Surace, to Keynote IPC APEX EXPO 2025
11/15/2024 | IPCEach year, IPC APEX EXPO features industry’s most dynamic, innovative minds to deliver keynote presentations that are both educational and entertaining. IPC APEX EXPO 2025 will feature Kevin Surace, an internationally renowned futurist and generative artificial intelligence (AI) innovator.