BAE Systems to Develop Advanced Seeker for Maritime Targeting from Air-launched Platforms
January 13, 2023 | BAE SystemsEstimated reading time: 1 minute

BAE Systems has received a $12 million Phase 2 contract from the Air Force Research Laboratory (AFRL) to further develop a low cost, all-weather, multi-mode (radar/infrared) open architecture seeker under the Maritime Weapon Innovation Program (MWIP) Joint Capability Technology Demonstration (also known as QUICKSINK).
QUICKSINK munition concept provides air-delivered maritime surface vessel defeat capability for the warfighter via a cost-effective precision-guided munition kit. The program aims to integrate the new seeker developed by BAE Systems’ FAST Labs™ research and development organization. The Weapon Open Systems Architecture (WOSA) compliant seeker is designed to be plug and play – providing semi-autonomous precision targeting of maritime surface vessels at low cost by retrofitting existing weapon systems to achieve torpedo-like seaworthy capabilities from the air.
“Our new multi-mode modular seeker enables precision identification and engagement of surface targets at great distances over a large area,” said Peter Dusaitis, chief scientist at BAE Systems’ FAST Labs. “Our seeker technology will greatly increase the warfighter’s capabilities, enabling combatant commanders with a new way to defend against maritime threats in a cost-effective manner.”
Phase 2 focuses on integration and test maturation of a prototype multi-mode seeker system through free flight capability demonstration against a maritime target.
Under the terms of the contract, BAE Systems is leading the development, integration and testing of its multi-mode seeker for maritime strike applications. The company’s solution extends and uses its experience from Phase 1, its precision munitions portfolio, and sensor research area. Its previous open architecture seeker development work includes the Seeker Cost Transformation (SECTR) program and its Microwave Array Technology for Reconfigurable Integrated Circuit (MATRICs™) Transceiver – a field-reprogrammable array of radio frequency subsystems.
Suggested Items
2025 ASEAN IT Spending Growth Slows to 5.9% as AI-Powered IT Expansion Encounters Post-Boom Normalization
06/26/2025 | IDCAccording to the IDC Worldwide Black Book: Live Edition, IT spending across ASEAN is projected to grow by 5.9% in 2025 — down from a robust 15.0% in 2024.
DownStream Acquisition Fits Siemens’ ‘Left-Shift’ Model
06/26/2025 | Andy Shaughnessy, I-Connect007I recently spoke to DownStream Technologies founder Joe Clark about the company’s acquisition by Siemens. We were later joined by A.J. Incorvaia, Siemens’ senior VP of electronic board systems. Joe discussed how he, Rick Almeida, and Ken Tepper launched the company in the months after 9/11 and how the acquisition came about. A.J. provides some background on the acquisition and explains why the companies’ tools are complementary.
United Electronics Corporation Advances Manufacturing Capabilities with Schmoll MDI-ST Imaging Equipment
06/24/2025 | United Electronics CorporationUnited Electronics Corporation has successfully installed the advanced Schmoll MDI-ST (XL) imaging equipment at their advanced printed circuit board facility. This significant technology investment represents a continued commitment to delivering superior products and maintaining their position as an industry leader in precision PCB manufacturing.
Insulectro & Dupont Host Technology Symposium at Silicon Valley Technology Center June 25
06/22/2025 | InsulectroInsulectro, the largest distributor of materials for use in the manufacture of PCBs and printed electronics, and DuPont, a major manufacturer of flex laminates and chemistry, invite fabricators, OEMS, designers, and engineers to attend an Innovation Symposium – Unlock the Power - this Wednesday, June 25, at DuPont’s Silicon Valley Technology Center in Sunnyvale, CA.
OKI, NTT Innovative Devices Establish Mass Production Technology for High-Power Terahertz Devices by Heterogeneous Material Bonding
06/21/2025 | BUSINESS WIREOKI, in collaboration with NTT Innovative Devices Corporation, has established mass production technology for high-power terahertz devices using crystal film bonding (CFB) technology for heterogeneous material bonding to bond indium phosphide (InP)-based uni-traveling carrier photodiodes (UTC-PD) onto silicon carbide (SiC) with excellent heat dissipation characteristics for improved bonding yields.