Henniker Plasma: Plasma Treatment of Fluoropolymers
February 14, 2023 | Henniker PlasmaEstimated reading time: 2 minutes
PTFE, and other fluorinated polymers, are chemically inert, thermally stable and highly hydrophobic, due to their intrinsically low surface energy. The chemical inertness of PTFE as an example, means that it is virtually impossible to form lasting adhesive bonds and coatings tend instead to form droplets and 3D particles on the surface rather than a uniform film. Traditional methods to increase the surface energy involve the use of aggressive primers which represent an ecological hazard.
Fluorinated polymers are not readily modified by standard plasma processes. Oxygen plasmas, which are successfully used to treat many hydrocarbon-based polymers, are not successful because the binding energy of the fluorine to carbon atom is far higher than that of oxygen to carbon. Plasma treatment of fluorinated polymers with oxygen plasmas instead causes a gradual etching of the surface, as opposed to surface activation.
The use of hydrogen plasma on the other hand, produces an immediate and lasting change in the nature of the fluoropolymer surface. The action of atomic hydrogen, generated by the plasma, is to react with surface fluorine and remove this into the gas phase where it is pumped away by the vacuum system. Hydrogen then terminates the free surface bonds to produce a CHx polymer surface which is readily wettable. The resulting surface is also mildly-etched on a microscopic scale which produces a microscopically structured surface. Both actions in combination result in a modified surface which may be glued, painted etc.
Typical Results
Results, below and across, show the change in morphology, water contact angle and surface energy obtained for PTFE following hydrogen plasma treatment. The surface energy of PTFE that has been plasma treated is actually lower than that of many common polyolefins, such as polyethylene and polypropylene, and well within the range of wettability required for many adhesives to form strong bonds.
Plasma Process
When gas atoms are ionised, the collision of high energy particles knocks electrons out of their orbits. This results in the characteristic “glow” or light associated with plasma. Plasmas many different species including atoms, molecules, ions, electrons, free radicals, metastables, and photons in the short wave ultraviolet (vacuum UV or VUV) range. Plasmas are generated in closed vessels at low pressures, typically < 1.0 Torr. The low pressure results in a long mean free path of the plasma species, so that they remain reactive until contact with a surface. The overall chamber temperature at the commonly used power levels and pressures is close to room temperature
Suggested Items
SMT Mounter Market Size Projected to Reach $5.06 Billion by 2030
12/23/2024 | openPRAccording to the new market research report "Global SMT (Surface-mount Technology) Mounter Market Report 2024-2030", published by QYResearch, the global SMT (Surface-mount Technology) Mounter market size is projected to reach USD 5.06 billion by 2030, at a CAGR of 4.7% during the forecast period.
Saab Receives Order from Sweden for Sea Giraffe 1X Naval Radar
12/16/2024 | SaabSaab has received an order from the Swedish Defence Materiel Administration (FMV) for the Sea Giraffe 1X radar system to the Swedish navy. The order value is approximately SEK 340 million with deliveries 2024-2026.
Fresh PCB Concepts: PCB Plating Process Overview
12/12/2024 | Team NCAB -- Column: Fresh PCB ConceptsIn this installment of Fresh PCB Concepts, Mike Marshall takes the helm stating: PCBs have been the platform for the interconnection of electronic components for decades. Because of process costs and other constraints, such as mechanical properties or size limitations of the alternatives, PCBs will remain the standard low-cost interconnection technology. Rapidly increasing performance and functionality requirements of wireless and high-speed devices have challenged the development and implementation of new manufacturing solutions.
Dana on Data: Merging 2D Electrical, 3D Mechanical Worlds
12/04/2024 | Dana Korf -- Column: Dana on DataImagine the day when placing components and routing signal traces and power planes are not constrained by 2D PCB fabrication processes and materials. Astronauts working on the space station have equipment mounted on all axes. They are not constrained by having to stand on a flat surface. They already have a 3D printer at the space station. Why can’t we create PCBs in a 3D space?
Connect the Dots: Designing for Reality—Pattern Plating
10/16/2024 | Matt Stevenson -- Column: Connect the DotsIn the previous episode of I-Connect007’s On the Line with… podcast, we painted the picture of the outer layer imaging process. Now we are ready for pattern plating, where fabrication can get tricky. The board is now ready to receive the copper traces, pads, and other elements specified in the original CAD design. This article will lay out the pattern plating process and discuss constraints in the chemistries that must be properly managed to meet the customer's exacting manufacturing tolerances.