NASA, Italian Space Agency Join Forces on Air Pollution Mission
March 13, 2023 | NASA JPLEstimated reading time: 4 minutes

NASA and the Italian space agency Agenzia Spaziale Italiana (ASI) are partnering to build and launch the Multi-Angle Imager for Aerosols (MAIA) mission, an effort to investigate the health impacts of tiny airborne particles polluting some of the world’s most populous cities. MAIA marks the first NASA mission whose primary goal is to benefit societal health, as well as the first time epidemiologists and public health researchers have been directly involved in development of a satellite mission.
Set to launch before the end of 2024, the MAIA observatory will consist of a satellite known as PLATiNO-2 provided by ASI and a science instrument built at NASA’s Jet Propulsion Laboratory in Southern California. The mission will collect and analyze data from the observatory, sensors on the ground, and atmospheric models.
Those results will then be related to human birth, death, and hospitalization records to answer pressing questions about the health impacts of solid and liquid particles that contaminate the air we breathe. These particles, called aerosols, have been linked to respiratory diseases such as asthma and lung cancer, cardiovascular diseases such as heart attack and stroke, and adverse reproductive and birth outcomes, including premature birth and low infant birth weight.
“Breathing airborne pollution particles has been associated with many health problems, but the toxicity of different particle mixtures has been less well understood,” said David Diner, NASA’s principal investigator for MAIA. “Working together with colleagues in Italy and around the world, we expect that MAIA will help us understand how airborne particle pollution puts our health at risk and potentially provide insights that will inform the decisions of public health officials and other policymakers.”
The observatory’s science instrument contains a pointable spectropolarimetric camera, which captures digital images at multiple angles in the ultraviolet, visible, near-infrared, and shortwave infrared portions of the electromagnetic spectrum. This data will help the MAIA science team explore the size, geographic distribution, composition, and abundance of airborne particles and investigate how they relate to the patterns and prevalence of health problems stemming from poor air quality.
“MAIA marks an important moment in the long history of cooperation between NASA and ASI, and it symbolizes the best our two agencies can marshal in terms of expertise, knowledge, and Earth-observation technology,” said Francesco Longo, head of the Earth Observation and Operation Division at ASI. “The science produced by this joint mission will provide benefits to humanity for years to come.”
The agreement between NASA and ASI was finalized in January 2023 and continues decades of collaboration, including on the Cassini mission to Saturn, which launched in 1997. In 2022, ASI’s ArgoMoon tiny cube satellite, or CubeSat, was a secondary payload aboard the Artemis I mission’s Orion spacecraft. The agency’s Light Italian CubeSat for Imaging Asteroids, or LICIACube, played a crucial role in NASA’s Double Asteroid Redirection Test (DART) mission.
Why Particles Matter
MAIA’s measurements of sunlight reflecting off airborne particles will help researchers determine the abundance, size, and optical properties of certain pollutants in the atmosphere. Using such data in conjunction with surface-based measurements will help researchers decipher the particles’ chemical composition.
Particles that are 10 micrometers or less in diameter (PM10) are small enough to be inhaled, potentially causing tissue damage and inflammation in the nose, throat, and lungs. Particles less than 2.5 micrometers (PM2.5) can penetrate deeper into the lungs and be absorbed into the bloodstream, where they can cause more serious health problems.
The composition of such particles depends on how they were formed. For example, black carbon results from the burning of fossil fuels and trees, while mineral dust comes from soil and sand. Other particles – organic carbon, sulfates, and nitrates – can form through chemical reactions between gases in the atmosphere. MAIA’s main objective is to study whether exposures to these different types of particle pollution have differing health impacts.
Over the course of its three-year mission, MAIA will focus on 11 primary target areas that cover major urban centers around the globe: Los Angeles, Atlanta, and Boston in the United States; Rome; Addis Ababa, Ethiopia; Barcelona, Spain; Beijing; Johannesburg; New Delhi; Taipei, Taiwan; and Tel Aviv, Israel. While orbiting 460 miles (740 kilometers) above Earth’s surface, the mission will also collect some data over 30 secondary target areas throughout the world.
Epidemiologists on the science team intend to study the effects of short-term exposure to particulate pollution over the course of days, as well as chronic exposure, which can last many years. Also of interest is “sub-chronic” exposure, such as the monthslong inhaling of pollutants that might occur during pregnancy, which can lead to adverse health effects for a mother and infant.
More About the Mission
MAIA is a joint Earth-observing mission between NASA and ASI. JPL, which is managed for NASA by Caltech in Pasadena, leads the U.S. component of the project and is providing the observatory’s science instrument and hosting the instrument operations center. NASA’s Space Communications and Navigation program (SCaN) will provide uplink and downlink services for commands and data, and NASA’s Atmospheric Science Data Center will provide computational resources to generate and archive science products. ASI will provide the PLATiNO-2 spacecraft, contribute launch services, and host the mission operations center.
Suggested Items
Priority Software Announces the New, Game-Changing aiERP
06/12/2025 | Priority SoftwarePriority Software Ltd., a leading global provider of ERP and business management software announces its revolutionary aiERP, leveraging the power of AI to transform business operations.
Breaking Silos with Intelligence: Connectivity of Component-level Data Across the SMT Line
06/09/2025 | Dr. Eyal Weiss, CybordAs the complexity and demands of electronics manufacturing continue to rise, the smart factory is no longer a distant vision; it has become a necessity. While machine connectivity and line-level data integration have gained traction in recent years, one of the most overlooked opportunities lies in the component itself. Specifically, in the data captured just milliseconds before a component is placed onto the PCB, which often goes unexamined and is permanently lost once reflow begins.
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
06/06/2025 | Nolan Johnson, I-Connect007Maybe you’ve noticed that I’ve been taking to social media lately to about my five must-reads of the week. It’s just another way we’re sharing our curated content with you. I pay special attention to what’s happening in our industry, and I can help you know what’s most important to read about each week. Follow me (and I-Connect007) on LinkedIn to see these and other updates.
UHDI Fundamentals: UHDI Drives Unique IoT Innovation—Smart Homes
06/03/2025 | Anaya Vardya, American Standard CircuitsThe combination of UHDI's high-bandwidth capabilities and IoT's real-time data processing can lead to more efficient, immersive, and smarter IoT systems. This convergence of two revolutionary technologies is enabling quantum advancements in some very “unconventional” applications.
Global Smart Manufacturing Market Size to Reach $787.54 Billion by 2030
06/02/2025 | PRNewswireThe global Smart Manufacturing Market Size is projected to be valued at USD 297.20 billion in 2023 and reach $787.54 billion by 2030, growing at a CAGR of 14.9% according to a new report by The Research Insights.