Bending 2D Nanomaterial Could 'Switch On’ Future Technologies
March 15, 2023 | Rice UniversityEstimated reading time: 2 minutes
Rice University materials scientist Boris Yakobson and collaborators uncovered a property of ferroelectric 2D materials that could be exploited as a feature in future devices.
Because they bend in response to an electrical stimulus, single-layer ferroelectric materials can be controlled to act as a nanoscale switch or even a motor, according to the study published in ACS Nano.
Single-layer or 2D materials are typically made up of a single layer of atoms, meaning they are only a few nanometers thick. They have received significant attention in recent years due to their physical, electrical, chemical and optical properties, which makes them useful in applications ranging from consumer electronics to medical and industrial technologies.
“2D materials are very thin and very flexible,” Yakobson said. “In single-layer ferroelectrics, this produces an unexpected spontaneous, active bending behavior.”
“The novelty we found in this study is that there is a connection or coupling between the ferroelectric state and the bending or flexing of the material. This work combines the discovery or prediction of a fundamental property of a class of 2D materials with a practical application angle.”
Ferroelectrics are materials made up of negative and positive ions that can shift to produce spontaneous polarization, meaning the ions segregate based on their electrical charge.
“The interesting thing is that the atoms are not identical,” explains Jun-Jie Zhang, a Rice postdoctoral research associate and lead author on the study. “Some of them are larger, and some are smaller, so the layer symmetry is broken.”
Polarization drives the larger atoms to one side of the 2D-material layer and the smaller atoms to the other side. This asymmetrical distribution of the atoms or ions causes the material surface to bend in ferroelectric state.
“So instead of remaining flat, in ferroelectric state the material will bend,” Yakobson said. “If you switch the polarization – and you can switch it by applying electrical voltage – you can control the direction in which it will bend. This controllable behavior means you have an actuator.
“An actuator is any device that translates a signal – in many cases an electrical signal, but it can be a different kind of signal – into mechanical displacement or, in other words, movement or work.”
The study looked at 2D indium phosphide (InP) as a representative of the class of ferroelectrics for which it predicts this property.
“This new property or flexing behavior has to be tested in a laboratory for specific substances,” Yakobson said. “Its most likely use will be as a type of switch. This behavior is very fast, very sensitive, which means that with a very tiny local signal you can maybe switch on a turbine or electrical engine, or control adaptive-optics telescopes’ mirrors. That’s basically the essence of these actuators.
“When you drive your car, you have a lot of knobs and switches and it makes everything really easy. You don’t have to crank open your car window anymore, you can just turn on a switch.”
Yakobson is Rice’s Karl F. Hasselmann Professor of Materials Science and NanoEngineering. Taif University chemist Tariq Altalhi is a co-author on the study.
Suggested Items
Rogers Announces Addition of Woon Keat Moh to Board of Directors
12/23/2024 | Rogers CorporationRogers Corporation announced that Woon Keat Moh ("Moh") has been appointed as an independent member of the Company’s Board of Directors, effective January 1, 2025. Following this change, the Board will be composed of nine members, eight of whom are independent.
Effects of Advanced Packaging and Stackup Design
12/26/2024 | I-Connect007 Editorial TeamKris Moyer teaches several PCB design classes for IPC and Sacramento State, including advanced PCB design. His advanced design classes take on some really interesting topics, including the impact of a designer’s choice of advanced packaging upon the design of the layer stackup. Kris shares his thoughts on the relationship between packaging and stackup, what PCB designers need to know, and why he believes, “The rules we used to live by are no longer valid.”
The Knowledge Base: The Era of Advanced Packaging
12/23/2024 | Mike Konrad -- Column: The Knowledge BaseThe semiconductor industry is at a pivotal juncture. As the traditional scaling predicted by Moore's Law encounters significant physical and economic barriers, transistor density can no longer double every two years without escalating costs and complications. As a result, the industry is shifting its focus from chip-level advancements to innovative packaging and substrate technologies. I Invited Dr. Nava Shpaisman, strategic collaboration manager at KLA, to provide some insight.
Coherent Evaluates Strategic Alternatives for Its Advanced Lithium-Ion Battery Recycling Technology
12/13/2024 | Globe NewswireCoherent Corp., a global leader in materials, networking, and lasers, today announced that as a result of an ongoing strategic portfolio assessment, the company will evaluate strategic alternatives for its Streamlined Hydrometallurgical Advanced Recycling Process (SHARP™) technology to efficiently recover and recycle critical metals from lithium-ion batteries (LiBs).
Battery Prices Stabilize in November, Slight Increase Expected in 2025
12/12/2024 | TrendForceTrendForce’s latest research reveals that China's EV sales continued to grow throughout November 2024, driving demand for EV batteries. LFP battery prices remained stable, while prices for ternary batteries saw a slight decline.