Bending 2D Nanomaterial Could 'Switch On’ Future Technologies
March 15, 2023 | Rice UniversityEstimated reading time: 2 minutes

Rice University materials scientist Boris Yakobson and collaborators uncovered a property of ferroelectric 2D materials that could be exploited as a feature in future devices.
Because they bend in response to an electrical stimulus, single-layer ferroelectric materials can be controlled to act as a nanoscale switch or even a motor, according to the study published in ACS Nano.
Single-layer or 2D materials are typically made up of a single layer of atoms, meaning they are only a few nanometers thick. They have received significant attention in recent years due to their physical, electrical, chemical and optical properties, which makes them useful in applications ranging from consumer electronics to medical and industrial technologies.
“2D materials are very thin and very flexible,” Yakobson said. “In single-layer ferroelectrics, this produces an unexpected spontaneous, active bending behavior.”
“The novelty we found in this study is that there is a connection or coupling between the ferroelectric state and the bending or flexing of the material. This work combines the discovery or prediction of a fundamental property of a class of 2D materials with a practical application angle.”
Ferroelectrics are materials made up of negative and positive ions that can shift to produce spontaneous polarization, meaning the ions segregate based on their electrical charge.
“The interesting thing is that the atoms are not identical,” explains Jun-Jie Zhang, a Rice postdoctoral research associate and lead author on the study. “Some of them are larger, and some are smaller, so the layer symmetry is broken.”
Polarization drives the larger atoms to one side of the 2D-material layer and the smaller atoms to the other side. This asymmetrical distribution of the atoms or ions causes the material surface to bend in ferroelectric state.
“So instead of remaining flat, in ferroelectric state the material will bend,” Yakobson said. “If you switch the polarization – and you can switch it by applying electrical voltage – you can control the direction in which it will bend. This controllable behavior means you have an actuator.
“An actuator is any device that translates a signal – in many cases an electrical signal, but it can be a different kind of signal – into mechanical displacement or, in other words, movement or work.”
The study looked at 2D indium phosphide (InP) as a representative of the class of ferroelectrics for which it predicts this property.
“This new property or flexing behavior has to be tested in a laboratory for specific substances,” Yakobson said. “Its most likely use will be as a type of switch. This behavior is very fast, very sensitive, which means that with a very tiny local signal you can maybe switch on a turbine or electrical engine, or control adaptive-optics telescopes’ mirrors. That’s basically the essence of these actuators.
“When you drive your car, you have a lot of knobs and switches and it makes everything really easy. You don’t have to crank open your car window anymore, you can just turn on a switch.”
Yakobson is Rice’s Karl F. Hasselmann Professor of Materials Science and NanoEngineering. Taif University chemist Tariq Altalhi is a co-author on the study.
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Creating a Design Constraint Strategy
07/24/2025 | I-Connect007 Editorial TeamMost designers learn how to set their design constraints through trial and error. EDA vendors’ guidelines explain how to use their particular tools’ constraints, and IPC standards offer a roadmap, but PCB designers usually develop their own unique styles for setting constraints. Is there a set of best practices for setting constraints? That’s what I asked Global Electronics Association design instructor Kris Moyer, who covers design constraints in his classes.
Meet the Author: Beth Turner Explores Encapsulating Sustainability for Electronics
07/28/2025 | I-Connect007In a special Meet the Author edition of On the Line with…, host Nolan Johnson welcomes Beth Turner, senior technical manager at MacDermid Alpha Electronics Solutions. Beth is the author of The Printed Circuit Assembler’s Guide to… Encapsulating Sustainability for Electronics.
The Pulse: Design Constraints for the Next Generation
07/17/2025 | Martyn Gaudion -- Column: The PulseIn Europe, where engineering careers were once seen as unpopular and lacking street credibility, we have been witnessing a turnaround in the past few years. The industry is now welcoming a new cohort of designers and engineers as people are showing a newfound interest in the profession.
Copper Price Surge Raises Alarms for Electronics
07/15/2025 | Global Electronics Association Advocacy and Government Relations TeamThe copper market is experiencing major turbulence in the wake of U.S. President Donald Trump’s announcement of a 50% tariff on imported copper effective Aug. 1. Recent news reports, including from the New York Times, sent U.S. copper futures soaring to record highs, climbing nearly 13% in a single day as manufacturers braced for supply shocks and surging costs.
Symposium Review: Qnity, DuPont, and Insulectro Forge Ahead with Advanced Materials
07/02/2025 | Barb Hockaday, I-Connect007In a dynamic and informative Innovation Symposium hosted live and on Zoom on June 25, 2025, representatives from Qnity (DuPont's electronics business), DuPont, and Insulectro discussed the evolving landscape of flexible circuit materials. From strategic corporate changes to cutting-edge polymer films, the session offered deep insight into design challenges, reliability, and next-gen solutions shaping the electronics industry.