Intel Contributes AI Acceleration to PyTorch 2.0
March 17, 2023 | IntelEstimated reading time: 1 minute

?In the release of Python 2.0, contributions from Intel using Intel® Extension for PyTorch , oneAPI Deep Neural Network Library (oneDNN) and additional support for Intel® CPUs enable developers to optimize inference and training performance for artificial intelligence (AI).
As part of the PyTorch 2.0 compilation stack, the TorchInductor CPU backend optimization by Intel Extension for PyTorch and PyTorch ATen CPU achieved up to 1.7 times faster FP32 inference performance when benchmarked with TorchBench, HuggingFace and timm.1 This update brings notable performance improvements to graph compilation over the PyTorch eager mode.
Other optimizations include:
- Improved message-passing between adjacent neural network nodes to support graph neural network in PyTorch Geometric (PyG) for enhanced inference and performance training on Intel CPUs.
- New x86 quantization backend – a combination of FBGEMM (Facebook General Matrix-Matrix Multiplication) and oneDNN backends – replaces FBGEMM as the default quantization backend for x86 CPU platforms to enable better end-to-end int8 inference performance.
- Extended use of oneDNN with oneDNN Graph API to maximize efficient code generation on AI hardware by automatically identifying the graph partitions to be accelerated through fusion. BFloat16 and Float32 data types are supported and only inference workloads can be optimized; BF16 is only optimized on machines with AVX512_BF16 ISA support.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Advint and Sayron Bring Advanced Rectifier Solutions to High-Reliability PCB Manufacturers
08/01/2025 | Advint IncorporatedAdvint Incorporated has partnered with Sayron, a leading global rectifier manufacturer, to supply cutting-edge IGBT-based DC rectifiers to high-performance PCB manufacturers across North America and beyond. Sayron’s precision-engineered rectifiers align with the stringent requirements of advanced PCB processes.
Teramount Raises $50M to Address Growing Demand for AI Infrastructure Optical Connectivity
07/31/2025 | PRNewswireTeramount, the leader in scalable fiber-to-chip interconnect solutions for AI, data centers and advanced computing, today announced it has raised $50 million in financing led by new investor Koch Disruptive Technologies (KDT). Existing investors Grove Ventures and several new strategic investors, including AMD Ventures, Hitachi Ventures, Samsung Catalyst Fund and Wistron, joined the round.
KOKI to Showcase Analytical Services and New HF1200 Solder Paste at SMTA Guadalajara 2025
07/31/2025 | KOKIKOKI, a global leader in advanced soldering materials and process optimization services, will exhibit at the SMTA Guadalajara Expo & Tech Forum, taking place September 17 & 18, 2025 at Expo Guadalajara, Salón Jalisco Halls D & E in Guadalajara, Mexico.
Global PCB Connections: Let the Spec Fit the Board, Not Just the Brand
07/17/2025 | Jerome Larez -- Column: Global PCB ConnectionsIf you’ve ever seen an excellent PCB quote delayed, or worse, go cold because of a single line on the fab print, you’re not alone. Often, that line reads something like, “Use 370HR only,” or “IT-180A required.” These and other brand-name materials are proven performers, but unless your design needs that specific resin system (say, for RF performance, thermal reliability, or stringent CAF resistance), you may inadvertently be holding your job hostage.
Digital Twin Concept in Copper Electroplating Process Performance
07/11/2025 | Aga Franczak, Robrecht Belis, Elsyca N.V.PCB manufacturing involves transforming a design into a physical board while meeting specific requirements. Understanding these design specifications is crucial, as they directly impact the PCB's fabrication process, performance, and yield rate. One key design specification is copper thieving—the addition of “dummy” pads across the surface that are plated along with the features designed on the outer layers. The purpose of the process is to provide a uniform distribution of copper across the outer layers to make the plating current density and plating in the holes more uniform.