WiMi Develops 3D Holographic LiDAR Diffuse Reflection Target Detection Chip to Fix Point Cloud Data Bias
May 9, 2023 | PRNewswireEstimated reading time: 3 minutes

WiMi Hologram Cloud Inc., a leading global Hologram Augmented Reality (AR) Technology provider, announced that it developed a coherent 3D holographic LiDAR diffuse target detection chip for solving technical defects of diffuse reflection generated from the continuous development and industry applications of LiDAR as WiMi's leading 3D holographic LiDAR technology has been applied in many unmanned and consumer electronics products.
The surfaces of many objects look relatively smooth, but in reality, they are not flat and messy under magnification. Rough surfaces cause light to reflect irregularly in all directions. LiDAR systems typically use laser pulses to scan and measure holographic 3D point locations in space relative to the sensor. LiDAR systems can naturally emit thousands or tens of thousands of laser pulses per second, creating a holographic 3D data point cloud. The diffuse reflection can lead to some deviation of the holographic 3D point cloud data, resulting in inaccurate or even misjudged results, which is the diffuse reflection problem of the LiDAR system.
3D holographic LiDAR uses a pulsed laser with time feedback or solid-state light to measure the point cloud space to reflect the object's spatial location. 3D holographic LiDAR system characterization requires that the pulsed or solid-state level of the sensor can be adjusted to compensate for diffuse reflections within a fuzzy emissivity dynamic range, which is the compensation adjustment of spectral reflectance data in complex environment characterization. It contains a series of complex algorithms such as power compensation of LiDAR, point cloud data gain, and noise reduction. If LiDAR does not have a well-designed processing system, it can easily lead to many obvious noise points in the LiDAR point cloud when intense light interferes. At the same time, the special diffuse reflection of particular objects also has the property of absorbing light waves, which will also produce great point cloud data voids.
WiMi's coherent 3D holographic LiDAR diffuse reflection target detection chip allows for spectral reflectance data judgments. The chip enables characterization confirmation of objects with different reflectance under complex environmental conditions through algorithms. Then combined with the calibrated spectral reflectance data, the precisely calibrated spectral reflectance allows accurate measurement of LiDAR range and minimizes diffuse target interference.
WiMi is doing further technology validation, hoping that the technology can assist the 3D holographic LiDAR system solve some problems. For example, LiDAR emits a pulse in the trailing effect and returns under normal circumstances. However, in practical applications, the pulse signal has a certain divergence angle, and the pulse often hits two items in front and behind, forming two echoes, leading to erroneous distance discrimination. The point cloud data is calibrated by analyzing this point cloud through complex spectral reflectance data to create an accurate mapping of the target area. In addition, the interference of point cloud data by highly reflective objects has been a technical challenge for LiDAR. When LiDAR scans a highly reflective object, the output point cloud data may form another object of similar size and shape at other locations besides the actual location due to the specular emission effect of the highly reflective object, which causes a bad mirror image in the point cloud data. WiMi hopes to solve these problematic problems plaguing LiDAR with the algorithm of a coherent 3D holographic LIDAR diffuse target detection chip.
3D holographic LiDAR has a wide range of applications in the future, and many technologies need to be improved gradually. There are many opportunities for innovative applications. Traditional LiDAR has been popularized in the primary stage of autonomous driving (for example, the adaptive cruise control system of cars), which used to be equipped only in high-end vehicles. Now it is almost standard in most cars, and the maturity of the technology means enormous market space. 3D holographic LiDAR can accurately give feedback on spatial position and relative distance information. Thus, it can detect various objects and perform spatial 3D holographic point cloud data imaging. Not only in autonomous driving, but 3D holographic LiDAR can also be applied in terrain modeling, spatial measurement, disaster warning, and many other fields. Suppose 3D holographic LiDAR combines XR technology, IoT, geolocation, AI, machine learning, and advanced networks. In that case, more new industry applications may be born, so in the future, 3D holographic LiDAR technology still has a lot of room for technological progress and a broad application market.
Testimonial
"Your magazines are a great platform for people to exchange knowledge. Thank you for the work that you do."
Simon Khesin - Schmoll MaschinenSuggested Items
Circus SE Set for High-Volume Market Entry in the Defense Sector
10/17/2025 | BUSINESS WIRECircus SE a global technology leader in AI robotics for autonomous nutrition systems and troop supply, is expanding its global production network as part of its high-volume market entry into the defense sector.
China Expands Rare Earth Export Restrictions, Tightening Grip on Global Supply Chains
10/16/2025 | I-Connect007 Editorial TeamChina sharply expanded its rare earth export restrictions on Oct. 9, adding additional elements and refining technologies to its control list while imposing stricter rules on foreign users in the defense and semiconductor industries.
SAMI Advanced Electronics Company Launches “Remal” Computer Manufacturing Project in Partnership with HP and Foxconn
10/15/2025 | SAMI-AECSAMI Advanced Electronics Company (SAMI-AEC), a wholly owned subsidiary of Saudi Arabian Military Industries (SAMI), proudly announced the launch of the “Remal” project for computer manufacturing, in strategic partnership with HP and Foxconn.
The Right Approach: Electro-Tek—A Williams Family Legacy, Part 1
10/15/2025 | Steve Williams -- Column: The Right ApproachThere is no bronze bust in the lobby or portrait in the conference room of Electro-Tek's founder—my Dad, Charles “Chuck” Williams—so with the facility closing last year after 56 years, I feel it is time to tell the story. Chuck Williams founded Electro-Tek in 1968 in our basement, eventually moving into the second floor of an old 1913 building in downtown Milwaukee that is still standing (the first of three eventual facilities).
LPKF Joins productronica’s 50th Anniversary, Showcasing Laser Technology for Electronics Manufacturing
10/10/2025 | LPKF Laser & ElectronicsLPKF Laser & Electronics invites visitors to productronica 2025 in Munich from November 18 to 21. At booth 305 in hall B2, the company will present its portfolio of modern laser technologies for the electronics industry live – from prototyping systems and high-performance depaneling to laser plastic welding for electronic housings and thin glass processing for advanced packaging.