New Sensors With the HOTS for Extreme Missions
May 15, 2023 | DARPAEstimated reading time: 2 minutes

Modern technologies are laden with sensors – a now-customary fact of life in much of the world. On smart watches and phones, and in cars and homes, sensors help monitor health, adjust various settings for comfort, and warn of potential dangers. More widely, sensors are deployed across countless commercial and defense systems, including in the oil and gas sector, the automotive industry, alternative energy sources, geothermal applications, and aviation and aerospace.
In these broader industrial contexts, the capabilities of sensors can be inhibited by thermal limitations. A sensor may theoretically be able to process inputs such as speed, pressure, or the integrity of a mechanical component, but inside a turbine engine, temperatures far exceed what any existing sensor can withstand.
DARPA’s new High Operational Temperature Sensors (HOTS) program will work toward developing microelectronic sensor technologies capable of high-bandwidth, high-dynamic-range sensing at extreme temperatures.
“Many of the defense and industrial systems that rely on sensors experience harsh environments beyond the capability of today’s high-performance physical sensors. That means these systems have to be designed and operated with reduced performance and excessive margins – they’re limited by the uncertainty of their thermal environments,” said Dr. Benjamin Griffin, program manager for HOTS. “However, if we can design, integrate, and demonstrate high-performance physical sensors that can operate in high-temperature environments, we can advance toward systems that perform at the edge of their capability instead of the limits of uncertainty.”
In development of next generation turbine engines or high-speed flight, thermal restrictions can hamstring progress. For example, high-performance pressure sensors are needed to capture complex flow dynamics in extremely high temperature environments (i.e., 800 °C or 1472 °F).
Today, sensors that can withstand thermally harsh conditions are limited to low-sensitivity transducers located in hot zones coupled via noisy electrical connections to remote, temperature-constrained, silicon signal-conditioning microelectronics in cold zones. The resulting integrated sensors lack the combination of frequency bandwidth and dynamic range essential for high-temperature missions.
Physical sensors that can overcome these limitations and optimally perform in high-temperature environments – without additional thermal management – will enable critical operations that include monitoring stability and functionality in extremely hot system components. Combinations of emerging materials, fabrication techniques, and integration technologies that inform new types of transistors and transducers, are among the potential approaches the HOTS program hopes to demonstrate as a sensor module.
“If you look at the progress of cars alone, we’ve seen sort of a nervous system of sensing evolve, providing visibility and knowledge of what’s happening across the platform. Applying the same concept to larger-scale systems in harsh environments will offer tremendous benefits for the future system capabilities,” Griffin said.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Nortech Systems Achieves Enhanced Fiber Optic Performance
09/16/2025 | Nortech SystemsNortech Systems Incorporated, a leading provider of design and manufacturing solutions for complex electromedical devices and electromechanical systems, announced significant advancements in its fiber optic capabilities.
Altair, Wichita State University’s NIAR Sign MoU to Accelerate Aerospace Innovation
09/16/2025 | AltairAltair, a global leader in computational intelligence, and Wichita State University’s (WSU) National Institute for Aviation Research (NIAR), one of the world’s leading aerospace research institutions, have signed a memorandum of understanding (MoU) to advance innovation across the aerospace and defense industries.
India’s Aerospace and Defence Engineered for Power, Driven by Electronics
09/16/2025 | Gaurab Majumdar, Global Electronics AssociationWith a defence budget of $82.05 billion (2025–26) and a massive $223 billion earmarked for aerospace and defence spending over the next decade, India is rapidly positioning itself as a major player in the global defence and aerospace market.
Honeywell-Led Consortium Receives UK Government Funding to Revolutionize Aerospace Manufacturing
09/02/2025 | HoneywellA consortium led by Honeywell has received UK Government funding for a project that aims to revolutionize how critical aerospace technologies are manufactured in the UK through the use of AI and additive manufacturing.
Coherent Announces Agreement to Sell Aerospace and Defense Business to Advent for $400 Million
08/15/2025 | AdventCoherent Corp., a global leader in photonics, today announced that it has entered into a definitive agreement to sell its Aerospace and Defense business to Advent, a leading global private equity investor, for $400 million. Proceeds will be used to reduce debt, which will be immediately accretive to Coherent’s EPS.