Revolutionary X-Ray Microscope Unveils Sound Waves Deep Within Crystals
October 10, 2023 | SLAC National Accelerator LaboratoryEstimated reading time: 2 minutes
![](https://iconnect007.com/application/files/8616/9694/7404/X-rayMicroscope.jpg)
Researchers at the Department of Energy’s SLAC National Accelerator Laboratory. Stanford University, and Denmark Technical University have designed a cutting-edge X-ray microscope capable of directly observing sound waves at the tiniest of scales – the lattice level within a crystal. These findings, published last week in Proceedings of the National Academy of Sciences, could change the way scientists study ultrafast changes in materials and the resulting properties.
“The atomic structure of crystalline materials gives rise to their properties and associated ‘use-case’ for an application,” said one of the researchers, Leora Dresselhaus-Marais, an assistant professor at Stanford and SLAC. “The crystalline defects and atomic scale displacements describe why some materials strengthen while others shatter in response to the same force. Blacksmiths and semiconductor manufacturing have perfected our ability to control some types of defects, however, few techniques today can image these dynamics in real-time at the appropriate scales to resolve how those the distortions connect to the bulk properties.”
In this new work, the team generated soundwaves in a diamond crystal, then used the new X-ray microscope they developed to directly image the subtle distortions inside the crystalline lattice. They did so at the timescales at which these atomic-scale vibrations naturally occur by leveraging the ultrafast and ultrabright pulses available at SLAC’s Linac Coherent Light Source (LCLS).
The researchers placed a special X-ray lens along the beam diffracted by the crystalline lattice to filter out the “perfectly packed” portion of the crystal and zero in on distortions in the crystal's structure caused by the sound wave and defects.
“We used this to image how an ultrafast laser transfers its light energy into heat via successive reflections of the out-of-equilibrium sound wave off the front and back surface of the crystal.” Dresselhaus-Marais said. “By showing this in diamond – a crystal with the fastest sound speed – we illustrate the new opportunities now available with our microscope to study new phenomena deep inside crystals.”
The results identify a way to see super-fast changes in materials without damaging them. Before this discovery, the tools researchers used were much too slow to see these changes. This matters because many things, like how heat moves or how sound waves spread, depend on these fast changes.
The implications of this breakthrough stretch across various disciplines, from materials science to physics, and even extend to fields like geology and manufacturing. By understanding the atomic-level changes that lead to larger observable events in materials, scientists can get a clearer picture of transformations, melting processes, and chemical reactions in materials – accessing a new 13 orders of magnitude of timescales.
“This new tool offers us a unique opportunity to study how rare events caused by defects, atomic-distortions, or other localized stimuli inside a lattice give rise to macroscopic changes in materials,” Dresselhaus-Marais said. “While our understanding of the macroscopic changes in materials is rather advanced, we are often missing the details of which ‘instigating events’ ultimately cause the phase transformations, melting, or chemistry we observe at larger scales. With ultrashort timescales now at our fingertips, we have the ability to hunt for these rare events at their native timescales.”
Suggested Items
IPC Hall of Fame Spotlight Series: Highlighting Doug Pauls
02/12/2025 | Dan Feinberg, Technology Editor, I-Connect007Over the years, IPC members who have contributed significantly to IPC and our industry have been awarded the IPC Raymond E. Pritchard Hall of Fame (HOF) Award. Though many early HOF members have passed away and are unknown to today’s IPC membership, their contributions still resonate. This special series on IPC Hall of Fame members provides a reminder of who was honored and why. As a bonus, for those who are still around, we get to find out what these talented individuals are up to today.
Strategic Materials Conference 2025 to Highlight the New Era of Materials Innovation
02/12/2025 | SEMIWith advanced materials as a critical enabler of semiconductor growth applications, the Strategic Materials Conference (SMC) 2025 will gather top executives and technology leaders from the semiconductor manufacturing industry for exclusive insights into the latest advancements in materials innovation.
Fujifilm to Invest 4 Billion yen in Belgium for CMP Slurries and Photolithography-related Materials
02/07/2025 | FujifilmFUJIFILM Corporation today announced that it will install new production facilities of CMP slurries*1, advanced semiconductor materials, and enhance existing facilities for photolithography-related materials*2 at its production site located in Belgium. In Europe, where demand for automotive semiconductors and industrial semiconductors supporting the DX of manufacturing processes at factories is expected to grow, Fujifilm makes an investment of approximately 4 billion yen (approx. 25 million EUR) to expand the production capacity of its Belgium site, based in Zwijndrecht, Antwerp.
Indium Expert to Address Thermal Challenges at TestConX 2025
02/04/2025 | Indium CorporationIndium Corporation Technical Support Engineer Carson Burt will deliver a technical presentation at TestConX 2025, taking place March 3-5 in Mesa, Arizona.
3M Joins Consortium to Accelerate Semiconductor Technology in the U.S.
02/04/2025 | PR Newswire3M is expanding its commitment to the semiconductor industry by joining the US-JOINT Consortium, a strategic partnership of 12 leading semiconductor suppliers. The consortium drives research and development in next-generation semiconductor advanced packaging and back-end processing technologies anchored by a new cutting-edge facility in Silicon Valley.