GIST Researchers Optimize the Performance of Novel Organic Electrochemical Transistors
January 18, 2024 | PRNewswireEstimated reading time: 2 minutes
Organic electrochemical transistors (OECTs) have recently received a lot of interest and attention in the research community, not only for their biocompatibility but also for other novel characteristics like the amplification of ionic–electronic signals and the detection of ions and molecules. To achieve these characteristics, semiconductors comprising OECTs must be able to transport both ions and electrons efficiently. Conjugated materials grafted with hydrophilic glycol chains have shown the desirable levels of efficiency, while also being soft and allowing ions to permeate through their surfaces. However, they exhibit imperfect semicrystalline characteristics and disordered fractions when converted into solid films.
The steady-state performance of OECTs can be optimized by using both molecular design and structural alignment together to reduce the energetic and microstructural disorders in the films. With this forethought, a group of researchers led by Professor Myung-Han Yoon from Gwangju Institute of Science and Technology, Korea, has recently undertaken a study to create high-performance OECT devices based on poly(diketopyrrolopyrrole) (PDPP)-type polymers as active layers. They modulated the number of repeating units of ethylene glycol (EG) side chains in PDPP from two to five and chose the figure-of-merit as the product of the charge carrier mobility and the volumetric capacitance. Their study was made available online in Advanced Materials on November 21, 2023.
Talking to us about the rationale behind conducting this study, Prof. Yoon says, "Using mixed conductors in electrochemical transistors makes it difficult to expect significant performance improvements, even when applying conventional microstructure control processes. This is due to the strong intermolecular cohesion owing to the flexibility and hydrophilicity of the molecular structure side chains. Our new mixed conductor material solves this problem by introducing alkyl-EG hybrid side chain structure, which can provide appropriate hydrophobicity and structural stability to the molecule."
The OECT device based on PDPP-4EG fabricated via spin casting showed optimal performance — a figure-of-merit value of 702 F V-1 cm-1 s-1, charge carrier mobility of 6.49 cm2 V-1 s-1, and a transconductance value of 137.1 S cm-1. The subthreshold swing values were as low as 7.1 V dec-1, and the number of interface trap states were only 1.3 x 1013 eV-1 cm-2. Furthermore, PDPP-4EG also exhibited the lowest degree of energetic disorder and well-developed crystalline domains with the least microstructural disorder.
Highlighting the long-term implications of this study, Prof. Yoon says, "In the era of artificial intelligence, neuromorphic devices are expected to be developed. Organic mixed conductors are among the most promising materials in this field, with high potential for advancement. Our research forms a part of the efforts to overcome the low performance of organic materials." In the long-term, the development of organic mixed conductors with high reliability can be applied to various fields such as next-generation wearable sensors, computers, and healthcare systems, thus contributing to the enhancement of human convenience.
Suggested Items
Keysight, Synopsys Deliver an AI-Powered RF Design Migration Flow
06/06/2025 | BUSINESS WIREKeysight Technologies, Inc. and Synopsys, Inc. introduced an AI-powered RF design migration flow to expedite migration from TSMC’s N6RF+ process to N4P technology, to address the performance requirements of today’s most demanding wireless integrated circuit applications.
AMD Acquires Brium to Strengthen Open AI Software Ecosystem
06/05/2025 | AMDAt AMD, we’re committed to building a high-performance, open AI software ecosystem that empowers developers and drives innovation. Today, we’re excited to take another step forward with the acquisition of Brium, a team of world-class compiler and AI software experts with deep expertise in machine learning, AI inference, and performance optimization.
Cadence Extends Support for Automotive Solutions on Arm Zena Compute Subsystems
06/05/2025 | Cadence Design Systems, Inc.Cadence announced IP, design solution, and expert design services for software and Systems-on-Chip (SoCs) based on Arm® Zena™ Compute Subsystems (CSS), Arm’s first-generation CSS for automotive.
L3Harris Receives Contract to Develop Next-Generation Security Processor for US Government
06/02/2025 | L3Harris TechnologiesL3Harris Technologies has been awarded a contract by the U.S. government to develop a next-generation security processor to secure communication devices across the globe.
Hon Hai Research Institute Partners with Taiwan Academic Research Institute and KAUST to Participate in CLEO 2025
05/30/2025 | FoxconnThe research team of the Semiconductor Division of Hon Hai Research Institute, together with the research teams of National Taiwan University and King Abdullah University of Science and Technology in Saudi Arabia, has successfully made breakthroughs in multi-wavelength μ -LED technology to achieve high-speed visible light communication and optical interconnection between chips.