GIST Researchers Optimize the Performance of Novel Organic Electrochemical Transistors
January 18, 2024 | PRNewswireEstimated reading time: 2 minutes
Organic electrochemical transistors (OECTs) have recently received a lot of interest and attention in the research community, not only for their biocompatibility but also for other novel characteristics like the amplification of ionic–electronic signals and the detection of ions and molecules. To achieve these characteristics, semiconductors comprising OECTs must be able to transport both ions and electrons efficiently. Conjugated materials grafted with hydrophilic glycol chains have shown the desirable levels of efficiency, while also being soft and allowing ions to permeate through their surfaces. However, they exhibit imperfect semicrystalline characteristics and disordered fractions when converted into solid films.
The steady-state performance of OECTs can be optimized by using both molecular design and structural alignment together to reduce the energetic and microstructural disorders in the films. With this forethought, a group of researchers led by Professor Myung-Han Yoon from Gwangju Institute of Science and Technology, Korea, has recently undertaken a study to create high-performance OECT devices based on poly(diketopyrrolopyrrole) (PDPP)-type polymers as active layers. They modulated the number of repeating units of ethylene glycol (EG) side chains in PDPP from two to five and chose the figure-of-merit as the product of the charge carrier mobility and the volumetric capacitance. Their study was made available online in Advanced Materials on November 21, 2023.
Talking to us about the rationale behind conducting this study, Prof. Yoon says, "Using mixed conductors in electrochemical transistors makes it difficult to expect significant performance improvements, even when applying conventional microstructure control processes. This is due to the strong intermolecular cohesion owing to the flexibility and hydrophilicity of the molecular structure side chains. Our new mixed conductor material solves this problem by introducing alkyl-EG hybrid side chain structure, which can provide appropriate hydrophobicity and structural stability to the molecule."
The OECT device based on PDPP-4EG fabricated via spin casting showed optimal performance — a figure-of-merit value of 702 F V-1 cm-1 s-1, charge carrier mobility of 6.49 cm2 V-1 s-1, and a transconductance value of 137.1 S cm-1. The subthreshold swing values were as low as 7.1 V dec-1, and the number of interface trap states were only 1.3 x 1013 eV-1 cm-2. Furthermore, PDPP-4EG also exhibited the lowest degree of energetic disorder and well-developed crystalline domains with the least microstructural disorder.
Highlighting the long-term implications of this study, Prof. Yoon says, "In the era of artificial intelligence, neuromorphic devices are expected to be developed. Organic mixed conductors are among the most promising materials in this field, with high potential for advancement. Our research forms a part of the efforts to overcome the low performance of organic materials." In the long-term, the development of organic mixed conductors with high reliability can be applied to various fields such as next-generation wearable sensors, computers, and healthcare systems, thus contributing to the enhancement of human convenience.
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Summit Interconnect Announces Appointment of Leo LaCroix as Chief Operating Officer
09/09/2025 | Summit Interconnect, Inc.Summit Interconnect, a leading North American manufacturer of Printed Circuit Boards (PCBs), today announced that Leo LaCroix has assumed the role of Chief Operating Officer (COO).
UHDI Fundamentals: UHDI Technology and Industry 4.0
09/03/2025 | Anaya Vardya, American Standard CircuitsUltra high density interconnect (UHDI) technology is rapidly transforming how smart systems are designed and deployed in the context of Industry 4.0. With its capacity to support highly miniaturized, high-performance, and densely packed electronics, UHDI is a critical enabler of the smart, connected, and automated industrial future. Here, I’ll explore the synergy between UHDI and Industry 4.0 technologies, highlighting applications, benefits, and future directions.
Mastering PCB Floor Planning
08/28/2025 | Stephen V. Chavez, Siemens EDAPlacement of PCB components is far more than just fitting components onto a board. It’s a strategic and critical foundational step, often called “floor planning,” that profoundly impacts the board’s performance, reliability, manufacturability, and cost. Floor planning ties into the solvability perspective, with performance and manufacturability being the other two competing perspectives for addressing and achieving success in PCB design.
Macronix Introduces Cutting-Edge Secure-Boot NOR Flash Memory
08/08/2025 | PRNewswireMacronix International Co., Ltd., a leading integrated device manufacturer in the non-volatile memory (NVM) market, announced ArmorBoot MX76, a robust NOR flash memory combining in a single device, the essential performance and an array of security features that deliver rapid boot times and iron-clad data protection.
UHDI Fundamentals: UHDI Technology and Industry 4.0
08/05/2025 | Anaya Vardya, American Standard CircuitsUltra high density interconnect (UHDI) technology is rapidly transforming how smart systems are designed and deployed in Industry 4.0. With its capacity to support highly miniaturized, high-performance, and densely packed electronics, UHDI is a critical enabler of the smart, connected, and automated industrial future. This article explores the synergy between UHDI and Industry 4.0 technologies, highlighting applications, benefits, and future directions.