-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueThe Essential Guide to Surface Finishes
We go back to basics this month with a recount of a little history, and look forward to addressing the many challenges that high density, high frequency, adhesion, SI, and corrosion concerns for harsh environments bring to the fore. We compare and contrast surface finishes by type and application, take a hard look at the many iterations of gold plating, and address palladium as a surface finish.
It's Show Time!
In this month’s issue of PCB007 Magazine we reimagine the possibilities featuring stories all about IPC APEX EXPO 2025—covering what to look forward to, and what you don’t want to miss.
Fueling the Workforce Pipeline
We take a hard look at fueling the workforce pipeline, specifically at the early introduction of manufacturing concepts and business to young people in this issue of PCB007 Magazine.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - pcb007 Magazine
BLUE Aims to Capture, Convert Ocean Energy with Low Environmental Impact
February 26, 2024 | DARPAEstimated reading time: 2 minutes
A new DARPA program is exploring the potential for dissolved organic matter, phytoplankton, zooplankton, and even microplastics to continually refuel, and thus extend the mission life, of ocean-deployed sensors. The BioLogical Underwater Energy, or BLUE, program seeks to solve the energy problem with low environmental impact using these abundant and energy-dense forms of marine biomass and other substances.
Ocean-deployed sensor systems including seabed-mounted profiling systems – devices that can measuring water temperature, salinity, and flow patterns -- hold great potential for national security, understanding dynamics of marine environments, and monitoring marine climate change. Owing to convenience and reliability, the vast majority of these systems are powered by batteries. Space constraints and finite energy densities of batteries, however, limit the amount of energy these systems can carry on board. As such, these systems must be serviced to recharge or replace depleted batteries, which is expensive, logistically demanding, and places personnel and platforms at risk. While endurance can be extended by reducing power consumption, active high duty cycle sensors, data processing, and communications require significant electrical power, and compromising on any one of these capabilities diminishes operational value.
If the 30-month BLUE program is successful, DARPA will demonstrate a novel, persistent, sustainable, low-environmental impact power supply that provides ultralong endurance and high payload capacity to remote, ocean-deployed sensor systems.
“It is our hypothesis that the energy requirements of many ocean-deployed systems can be met by development of an onboard device that converts marine biomass into simple fuels and then converts those fuels into operational power,” said Dr. Leonard Tender, BLUE program manager.
Performers will initially focus on characterization of microscopic marine biomass that can be utilized to generate electrical power, identification of key environmental features needed to best meet program goals, and leveraging biology to develop the process for conversion of the input materials to electrical power. Teams will also develop strategies for the capture and mass transport of biomass through conversion to enable up to one year of continuous power generation. The final step involves completion of a comprehensive ecological and environmental impact analysis to ensure system safety.
BLUE performers will engage with U.S. government and defense stakeholders, as well as appropriate regulatory authorities, to ensure safety and efficacy. Teams will be required to meet with ethical, legal, and societal implications experts and ensure the research addresses any related concerns. In the first three months of the program, performers will be working with an independent verification and validation team to conduct environmental assessment of biomass consumption.
“Achieving battery-level power persistently and while fully submerged would be a game changer,” added Tender.
A Broad Agency Announcement solicitation with all program details and instructions for submitting proposals is available on SAM.gov.
Suggested Items
Mazda, ROHM Begin Joint Development of Automotive Components Using Next-Generation Semiconductors
03/28/2025 | ROHMMazda Motor Corporation and ROHM Co., Ltd. have commenced joint development of automotive components using gallium nitride (GaN) power semiconductors, which are expected to be the next-generation semiconductors.
Electronics in Harsh Environments Conference Program Announced
03/25/2025 | SMTASMTA Europe is proud to announce the 2025 Electronics in Harsh Environments Conference, taking place 20-22 May in Amsterdam, Netherlands. This global conference is a three-day technical event with 27 technical presentations focused on building reliable electronics used in power electronics and harsh environments.
Life in the Fast Lane: A Smooth Ride for Bill Cardoso's New Business Converting Cobra Roadsters to Electric
03/26/2025 | Barry Matties, IPC CommunityBill Cardoso has established quite a list of accomplishments behind his name, from nuclear scientist, organic farmer, and IPC member to entrepreneur and owner of the largest U.S.-based manufacturer in the field of X-ray inspection. Three years ago, though, he brought home a Cobra roadster, and his son’s visceral reaction led to yet another new business venture.
Siemens Expands Industrial Copilot with New Generative AI-powered Maintenance Offering
03/24/2025 | SiemensThe Siemens Industrial Copilot is revolutionizing industry by enabling customers to leverage generative AI across the entire value chain – from design and planning to engineering, operations, and services.
New Power Management Chips from TI Maximize Protection, Density and Efficiency for Modern Data Centers
03/24/2025 | Texas InstrumentsTexas Instruments (TI) debuted new power-management chips to support the rapidly growing power needs of modern data centers. As the adoption of high-performance computing and artificial intelligence (AI) increases, data centers require more power-dense and efficient solutions.