DARPA Explores Additive Manufacturing’s Revolutionary Potential for Futuristic Microsystems
March 12, 2024 | DARPAEstimated reading time: 2 minutes

DARPA played a seminal role in establishing materials science as a discipline. One of the latest disruptive efforts in new materials and applications, the Additive Manufacturing of Microelectronic systEms (AMME) program, seeks to launch microsystems manufacturing far beyond today’s state of the art.
AMME takes aim at revolutionizing the manufacture of microsystems through technological breakthroughs in producing novel, multi-material microsystems at incredible speeds, volumes, and resolution. This additive manufacturing process would enhance commercial devices with innovative add-on technologies and create the ability to rapidly respond to mission requirements – innovations similar to additive manufacturing’s transformation of complex prototyping. With AMME, DARPA aims to overcome fundamental limits specifically for microsystems.
DARPA seeks groundbreaking advances in additive manufacturing by achieving a trifecta of material quality, high resolution, and massive print throughput. The goal of AMME will be to make it possible to create microsystems with new geometries that would be able to integrate mechanical, electrical, or biological subcomponents.
“AMME is inspired by new insights from selective material synthesis and volumetric additive manufacturing that would enable a new class of microsystems,” said Michael Sangillo, AMME program manager. “We want to remove design rules imposed by traditional manufacturing tools and demonstrate novel microsystem technologies that create new opportunities for national security and emerging applications.”
Today’s methods are hamstrung by the inherent tradeoffs between resolution and throughput of traditional manufacturing: such as precise 3D printing that may be ultra-high resolution but subject to low throughput, or volumetric printing that’s high throughput but limited to lower resolution and one material at a time. AMME researchers will work to simultaneously synthesize high-quality multi-materials at unprecedented resolution levels and throughputs.
This will require AMME performers to invent radically new approaches for 3D additive manufacturing of complex geometric microsystems. This includes creating precursor material combinations that allow for rapid, multi-material printing that is not possible today. An additional challenge will be creating a fabrication process capable of printing at sub-micron resolution and extremely fast speeds. If successful, AMME will print a penny-sized microsystem (with 500 nm resolution) in about three minutes.
“Our objective is to demonstrate a novel, functional microsystem that achieves additive manufacturing advances not possible today – advances like the ability for astronauts to make on-demand repairs in space,” Sangillo said. “AMME will also focus on the commercialization approach, so we can produce a manufacturing system that can be quickly adopted by the broader industrial community, including DOD and other U.S. government organizations.”
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Weaning the U.S. Military Off a Tablet Supply Chain That Leads to China
09/08/2025 | Jim Will, USPAETablet computers are essential to how our military fights, moves and sustains, but these devices are built on a fragile global supply chain with strong ties to China. Building domestic manufacturing to eliminate this vulnerability is feasible if we tap into the information and capabilities that already exist and create strong demand for tablets produced by trusted and assured sources.
Zhen Ding Posts August 2025 Monthly Revenue Report
09/08/2025 | Zhen DingZhen Ding Technology Holding Limited, a global leading PCB manufacturer, today reported August 2025 revenue of NT$14,651 million, up 9.13% MoM and down 17.75% YoY.
Kitron Reports Initiation of Share Buyback Program
09/08/2025 | KitronKitron ASA has decided to initiate a share buyback program of up to 16,000 of its own shares for a total maximum amount of NOK 900,000. The buyback program may be carried out in the period from this announcement and until 12 September 2025.
SisTech Manufacturing Elevates PCB Assembly Services with Cutting-Edge Innovations
09/08/2025 | Globe NewswireSisTech Manufacturing, a leader in precision electronic manufacturing services, has announced it will enhance its capabilities in printed circuit board assembly.
Hitachi Unveils $1B U.S. Investment in Critical Grid Infrastructure
09/05/2025 | Hitachi EnergyHitachi Energy, a wholly owned subsidiary of Hitachi, Ltd., and global leader in electrification, today announced a historic investment of more than $1 billion USD to expand the production of critical electrical grid infrastructure in the United States.