Intel Takes Next Step Toward Building Scalable Silicon-Based Quantum Processors
May 2, 2024 | BUSINESS WIREEstimated reading time: 1 minute

Nature published an Intel research paper, “Probing single electrons across 300-mm spin qubit wafers,” demonstrating state-of-the-art uniformity, fidelity and measurement statistics of spin qubits. The industry-leading research opens the door for the mass production and continued scaling of silicon-based quantum processors, all of which are requirements for building a fault-tolerant quantum computer.
Quantum hardware researchers from Intel developed a 300-millimeter cryogenic probing process to collect high-volume data on the performance of spin qubit devices across whole wafers using complementary metal oxide semiconductor (CMOS) manufacturing techniques.
The improvements to qubit device yield combined with the high-throughput testing process enabled researchers to obtain significantly more data to analyze uniformity, an important step needed to scale up quantum computers. Researchers also found that single-electron devices from these wafers perform well when operated as spin qubits, achieving 99.9% gate fidelity. This fidelity is the highest reported for qubits made with all-CMOS-industry manufacturing.
The small size of spin qubits, measuring about 100 nanometers across, makes them denser than other qubit types (e.g., superconducting), enabling more complex quantum computers to be made on a single chip of the same size. The fabrication approach was conducted using extreme ultraviolet (EUV) lithography, which allowed Intel to achieve these tight dimensions while also manufacturing in high volume.
Realizing fault-tolerant quantum computers with millions of uniform qubits will require highly reliable fabrication processes. Drawing upon its legacy in transistor manufacturing expertise, Intel is at the forefront of creating silicon spin qubits similar to transistors by leveraging its cutting-edge 300-millimeter CMOS manufacturing techniques, which routinely produce billions of transistors per chip.
Building on these findings, Intel plans to continue to make advances in using these techniques to add more interconnect layers to fabricate 2D arrays with increased qubit count and connectivity, as well as demonstrating high-fidelity two-qubit gates on its industry manufacturing process. However, the main priority will continue to be scaling quantum devices and improving performance with its next generation quantum chip.
Suggested Items
Pudu Robotics' PUDU T300 Achieves CE-MD and CE-RED Certifications, Empowering Global Smart Manufacturing with International Safety Standards
03/14/2025 | PRNewswirePudu Robotics, a global leader in service robotics sector, announced its innovative industrial delivery robot, the PUDU T300, has obtained both the CE-MD (Machinery Directive) and CE-RED (Radio Equipment Directive) certificates by TÜV SÜD, a world-renowned testing and certification organization.
DELO Releases IBOA-free Medical Adhesive for Glucose Monitoring Sensors and Other Wearables
03/14/2025 | DELODELO has released a new light-curing medical-grade adhesive engineered with nontoxicity in mind. DELO PHOTOBOND MG4047 is designed for wearable medical applications such as glucose monitoring sensors (CGM). Its chemical properties and impermeable characteristics help prevent skin irritation in cases of media influence such as rain or sweat.Teaser
Collins Aerospace Approved to Begin Full Rate Production of MAPS Gen II system
03/13/2025 | Collins AerospaceCollins Aerospace, an RTX business, has received approval for Full Rate Production of the Mounted Assured Positioning, Navigation and Timing (PNT) Generation II system (MAPS GEN II).
Eltek Reports Full Year and Q4 2024 Financial Results
03/13/2025 | EltekEltek Ltd., a global manufacturer and supplier of technologically advanced solutions in the field of printed circuit boards (PCBs), today announced its financial results for the full year and fourth quarter ended December 31, 2024.
YINCAE: UF 158UL Redefines Underfill for Large Chips
03/12/2025 | YINCAEYINCAE, a leading innovator in advanced materials solutions, today announced the launch of its groundbreaking underfill material, UF 158UL. This cutting-edge product is designed to meet the increasing demands of large format chips, offering unparalleled performance in room temperature flow, fast cure, and high reliability.