Intel Takes Next Step Toward Building Scalable Silicon-Based Quantum Processors
May 2, 2024 | BUSINESS WIREEstimated reading time: 1 minute

Nature published an Intel research paper, “Probing single electrons across 300-mm spin qubit wafers,” demonstrating state-of-the-art uniformity, fidelity and measurement statistics of spin qubits. The industry-leading research opens the door for the mass production and continued scaling of silicon-based quantum processors, all of which are requirements for building a fault-tolerant quantum computer.
Quantum hardware researchers from Intel developed a 300-millimeter cryogenic probing process to collect high-volume data on the performance of spin qubit devices across whole wafers using complementary metal oxide semiconductor (CMOS) manufacturing techniques.
The improvements to qubit device yield combined with the high-throughput testing process enabled researchers to obtain significantly more data to analyze uniformity, an important step needed to scale up quantum computers. Researchers also found that single-electron devices from these wafers perform well when operated as spin qubits, achieving 99.9% gate fidelity. This fidelity is the highest reported for qubits made with all-CMOS-industry manufacturing.
The small size of spin qubits, measuring about 100 nanometers across, makes them denser than other qubit types (e.g., superconducting), enabling more complex quantum computers to be made on a single chip of the same size. The fabrication approach was conducted using extreme ultraviolet (EUV) lithography, which allowed Intel to achieve these tight dimensions while also manufacturing in high volume.
Realizing fault-tolerant quantum computers with millions of uniform qubits will require highly reliable fabrication processes. Drawing upon its legacy in transistor manufacturing expertise, Intel is at the forefront of creating silicon spin qubits similar to transistors by leveraging its cutting-edge 300-millimeter CMOS manufacturing techniques, which routinely produce billions of transistors per chip.
Building on these findings, Intel plans to continue to make advances in using these techniques to add more interconnect layers to fabricate 2D arrays with increased qubit count and connectivity, as well as demonstrating high-fidelity two-qubit gates on its industry manufacturing process. However, the main priority will continue to be scaling quantum devices and improving performance with its next generation quantum chip.
Suggested Items
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
04/18/2025 | Andy Shaughnessy, Design007 MagazineIt’s been a busy week in our industry. Never a dull moment! If you’ve been paying attention to our tariff tumult with China and its effect on the stock market, especially if your company does a lot of business with China, you might be tempted to call in a Xanax refill about now. But hang tight. This is still early in the first quarter. This brouhaha serves to underscore our need to manufacture critical laminates and components in the U.S. In this week’s must-reads, we have a potpourri of articles covering tariffs, the next generation of HDI, the three-year anniversary of IPC Mexico, a novel green technology, and emerging design trends.
Real Time with... IPC APEX EXPO 2025: Aster–Enhancing Design for Effective Testing Strategies
04/18/2025 | Real Time with...IPC APEX EXPOWill Webb, technical director at Aster, stresses the importance of testability in design, emphasizing early engagement to identify testing issues. This discussion covers the integration of testing with Industry 4.0, the need for good test coverage, and adherence to industry standards. Innovations like boundary scan testing and new tools for cluster testing are introduced, highlighting advancements in optimizing testing workflows and collaboration with other tools.
IPC President’s Award: Xaver Feiner
04/17/2025 | Nolan Johnson, SMT007 MagazineThroughout his career, Xaver Feiner, vice president of marketing and sales at Zollner Elektronik, has developed extensive expertise in account management and new business development with a strong focus on the semiconductor industry, aerospace, and industrial electronics. Xaver has cultivated a profound understanding of global markets and remains deeply engaged with the challenges and opportunities presented by digital transformation. Since 2020, he has been an active member of the IPC Europe Advocacy Group, where he is dedicated to advancing the position of the electronics industry and the EMS sector across Europe.
New High Power 3D AXI for Power Electronics from Test Research, Inc.
04/17/2025 | TRITest Research, Inc. (TRI), a leading provider of Test and Inspection solutions for the electronics manufacturing industry, proudly announces the launch of the 3D AXI TR7600HP system. Designed for power semiconductor inspection, the TR7600HP enhances accuracy and efficiency in detecting defects in components such as IGBTs, MOSFETs, SiC inverters, and Paladin Connectors.
IPC APEX EXPO 2025 Learning Lounge: Education on the Show Floor
04/16/2025 | Andy Shaughnessy, Design007The conference portion of IPC APEX EXPO has been providing educational opportunities for attendees since the first show. But recently, show managers decided to expand education onto the show floor.