-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueInner Layer Precision & Yields
In this issue, we examine the critical nature of building precisions into your inner layers and assessing their pass/fail status as early as possible. Whether it’s using automation to cut down on handling issues, identifying defects earlier, or replacing an old line...
Engineering Economics
The real cost to manufacture a PCB encompasses everything that goes into making the product: the materials and other value-added supplies, machine and personnel costs, and most importantly, your quality. A hard look at real costs seems wholly appropriate.
Alternate Metallization Processes
Traditional electroless copper and electroless copper immersion gold have been primary PCB plating methods for decades. But alternative plating metals and processes have been introduced over the past few years as miniaturization and advanced packaging continue to develop.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - pcb007 Magazine
Demand from AMD and NVIDIA Drives FOPLP Development, Mass Production Expected in 2027–2028
July 5, 2024 | TrendForceEstimated reading time: 2 minutes
In 2016, TSMC developed and named its InFO FOWLP technology, and applied it to the A10 processor used in the iPhone 7. TrendForce points out that since then, OSAT providers have been striving to develop FOWLP and FOPLP technologies to offer more cost-effective packaging solutions.
Starting in the second quarter, chip companies like AMD have actively engaged with TSMC and OSAT providers to explore the use of FOPLP technology for chip packaging and helping drive industry interest in FOPLP. TrendForce observes that there are three main models for introducing FOPLP packaging technology: Firstly, OSAT providers transitioning from traditional methods of consumer IC packaging to FOPLP. Secondly, foundries and OSAT providers packaging AI GPUs that are transitioning 2.5D packaging from wafer level to panel level. Thirdly, panel makers who are packaging consumer ICs.
Examining cases of OSAT providers transitioning from traditional packaging to FOPLP for consumer ICs, AMD has been in in discussion with PTI and ASE for PC CPU products, while Qualcomm has been in talks with ASE for PMIC products. Currently, due to FOPLP’s linewidth and spacing not yet matching the level of FOWLP, FOPLP applications are temporarily limited to mature processes and cost-sensitive products like PMICs. Mainstream consumer IC products will adopt FOPLP once the technology matures.
For foundries and OSAT providers transitioning AI GPU packaging from wafer level to panel level 2.5D, AMD and NVIDIA have been discussing with TSMC and SPIL for AI GPU products, focusing on enlarging the chip packaging size under the existing 2.5D model. However, due to technical challenges, foundries and OSAT providers are still evaluating this transition.
NXP and STMicroelectronics, representing the development direction of panel makers packaging consumer ICs, are currently undergoing talks with Innolux to package PMIC products.
Several points stand out regarding the impact of FOPLP technology on the packaging and testing industry: Firstly, OSAT providers can offer low-cost packaging solutions, increasing their market share in existing consumer ICs and even entering multi-chip packaging and heterogeneous integration businesses. Secondly, panel makers can enter the semiconductor packaging business. Thirdly, foundries and OSAT providers can reduce the cost structure of 2.5D packaging models, potentially expanding 2.5D packaging services from the AI GPU market to the consumer IC market. Lastly, GPU providers can increase the packaging size of AI GPUs.
TrendForce believes that the advantages and disadvantages of FOPLP—along with adoption incentives and challenges—coexist. The main advantages are lower unit costs and larger packaging sizes, but the technology and equipment systems still need development, and the commercialization process is highly uncertain. The estimated mass production timeline for FOPLP packaging technology in consumer IC and AI GPU applications is the second half of 2024 to 2026 and 2027–28, respectively.
Suggested Items
Biden-Harris Administration Announces CHIPS Incentives Award with Amkor Technology to Bring End-to-End Chip Production to the U.S.
12/25/2024 | U.S. Department of CommerceThe Biden-Harris Administration announced that the U.S. Department of Commerce awarded Amkor Technology Arizona, Inc., a subsidiary of Amkor Technology, Inc., up to $407 million in direct funding under the CHIPS Incentives Program’s Funding Opportunity for Commercial Fabrication Facilities.
Effects of Advanced Packaging and Stackup Design
12/26/2024 | I-Connect007 Editorial TeamKris Moyer teaches several PCB design classes for IPC and Sacramento State, including advanced PCB design. His advanced design classes take on some really interesting topics, including the impact of a designer’s choice of advanced packaging upon the design of the layer stackup. Kris shares his thoughts on the relationship between packaging and stackup, what PCB designers need to know, and why he believes, “The rules we used to live by are no longer valid.”
The Knowledge Base: The Era of Advanced Packaging
12/23/2024 | Mike Konrad -- Column: The Knowledge BaseThe semiconductor industry is at a pivotal juncture. As the traditional scaling predicted by Moore's Law encounters significant physical and economic barriers, transistor density can no longer double every two years without escalating costs and complications. As a result, the industry is shifting its focus from chip-level advancements to innovative packaging and substrate technologies. I Invited Dr. Nava Shpaisman, strategic collaboration manager at KLA, to provide some insight.
Toray Engineering Launches TRENG-PLP Coater: Panel Level Coater for Advanced Semiconductor Packaging
12/17/2024 | ACCESSWIREToray Engineering Co., Ltd. has developed the TRENG-PLP Coater, a high-accuracy coating device for panel level packaging PLP is an advanced semiconductor packaging technology, for which there is growing demand particularly from AI servers and data centers. Sales of the TRENG-PLP Coater will commence in December 2024.
Global Semiconductor Market to Grow by 15% in 2025, Driven by AI
12/13/2024 | IDCThe global demand for artificial intelligence (AI) and high-performance computing (HPC) will continue to rise, growing by over 15% in 2025, according to IDC ’s latest Worldwide Semiconductor Technology Supply Chain Intelligence report. Major application markets, ranging from cloud data centers to specific industry segments, are expected to undergo upgrades, heralding a new boom for the semiconductor industry.