NASA, GE Aerospace Advancing Hybrid-Electric Airliners with HyTEC
September 17, 2024 | NASAEstimated reading time: 3 minutes

Hybrid-electric cars have been a staple of the road for many years now.
Soon that same idea of a part-electric-, part-gas-powered engine may find its way into the skies propelling a future jet airliner.
NASA is working in tandem with industry partner GE Aerospace on designing and building just such an engine, one that burns much less fuel by including new components to help electrically power the engine.
In this hybrid jet engine, a fuel-burning core powers the engine and is assisted by electric motors. The motors produce electric power, which is fed back into the engine itself—therefore reducing how much fuel is needed to power the engine in the first place.
High Tech Hybrid-Electric
The work is happening as part of NASA’s Hybrid Thermally Efficient Core (HyTEC) project. This work intends to demonstrate this engine concept by the end of 2028 to enable its use on airliners as soon as the 2030s.
It represents a major step forward in jet engine technology.
This jet engine would be the first ever mild hybrid-electric jet engine. A “mild hybrid” engine can be powered partially by electrical machines operating both as motors and generators.
“This will be the first mild hybrid-electric engine and could lead to the first production engine for narrow-body airliners that’s hybrid electric,” said Anthony Nerone, who leads the HyTEC project from NASA’s Glenn Research Center in Cleveland. “It really opens the door for more sustainable aviation even beyond the 2030s.”
The hybrid-electric technology envisioned by NASA and GE Aerospace also could be powered by a new small jet engine core.
A major HyTEC project goal is to design and demonstrate a jet engine that has a smaller core but produces about the same amount of thrust as engines being flown today on single-aisle aircraft.
At the same time, the smaller core technology aims to reduce fuel burn and emissions by an estimated 5 to 10%.
How Does It Work?
A GE Aerospace Passport engine is being modified with hybrid electric components for testing.
“Today’s jet engines are not really hybrid electric,” Nerone said. “They have generators powering things like lights, radios, TV screens, and that kind of stuff. But not anything that can power the engines.”
The challenge is figuring out the best times to use the electric motors.
“Later this year, we are doing some testing with GE Aerospace to research which phases of flight we can get the most fuel savings,” Nerone said.
Embedded electric motor-generators will optimize engine performance by creating a system that can work with or without energy storage like batteries. This could help accelerate the introduction of hybrid-electric technologies for commercial aviation prior to energy storage solutions being fully matured.
“Together with NASA, GE Aerospace is doing critical research and development that could help make hybrid-electric commercial flight possible,” said Arjan Hegeman, general manager of future of flight technologies at GE Aerospace.
The technologies related to HyTEC are among those GE Aerospace is working to mature and advance under CFM International’s Revolutionary Innovation for Sustainable Engines (RISE) program. CFM is a joint venture between GE Aerospace and Safran Aircraft Engines. CFM RISE, which debuted in 2021, encompasses a suite of technologies including advanced engine architectures and hybrid electric systems aimed at being compatible with 100% Sustainable Aviation Fuel.
HyTEC, part of NASA’s Advanced Air Vehicles Program, is a key area of NASA’s Sustainable Flight National Partnership, which is collaborating with government, industry, and academic partners to address the U.S. goal of net-zero greenhouse gas emissions in aviation by the year 2050.
Suggested Items
TI Introduces the World's Smallest MCU, Enabling Innovation in the Tiniest of Applications
03/12/2025 | PRNewswireTexas Instruments (TI) introduced the world's smallest MCU, expanding its comprehensive Arm® Cortex®-M0+ MSPM0 MCU portfolio. Measuring only 1.38mm2, about the size of a black pepper flake, the wafer chip-scale package (WCSP) for the MSPM0C1104 MCU enables designers to optimize board space in applications such as medical wearables and personal electronics, without compromising performance.
Applied Aerospace Acquires NeXolve
03/12/2025 | PRNewswireApplied Aerospace, a proven manufacturer of solutions for commercial and military spacecraft, aircraft, and ground-based systems, announced it has completed the acquisition of NeXolve.
Hannah Nelson: The Inspiring Journey of an Emerging Engineer
03/11/2025 | I-Connect007 Editorial TeamAt last year’s IPC APEX EXPO, former IPC Emerging Engineer Hannah Nelson had the opportunity to reflect on her inspiring journey into the world of engineering, from her education at Valparaiso University to her internship and her first job at Texas Instruments. From pivotal moments and the unexpected turns that helped shape her early career and passion for electrical engineering, her story highlights the importance of interdisciplinary collaboration, taking opportunities that arise early on, finding confidence in one's voice, and the rewards of pursuing one's passions within the engineering field.
RTX's Collins Aerospace Unveils New Engineering Development and Test Center in Bengaluru
03/10/2025 | RTXCollins Aerospace, an RTX business, opened its new Engineering Development and Test Center (EDTC) at the company’s North Gate campus in Bengaluru, India. The new facility streamlines product development, testing, and certification of components locally, bringing aerospace technologies to market faster.
Finding and Training the Next Design Engineers
03/06/2025 | Andy Shaughnessy, Design007 MagazineThere are a lot of job openings for PCB design engineers, and not enough young people in the pipeline to fill these jobs. How are we going to attract this next generation of design engineers to this industry, and what’s the best course of action for continuous training of these EEs? I asked Bill Hargin, founder and “director of everything” at Z-zero, to share his thoughts continuous training and what the future may hold for design engineers of the future.