Global Silicon Wafer Shipments to Remain Soft in 2024 Before Strong Expected Rebound in 2025
October 21, 2024 | SEMIEstimated reading time: 1 minute
Global shipments of silicon wafers are projected to decline 2% in 2024 to 12,174 million square inches (MSI) with a strong rebound of 10% delayed until 2025 to reach 13,328 MSI as wafer demand continues to recover from the downcycle, SEMI reported in its annual silicon shipment forecast.
Strong silicon wafer shipment growth is expected to continue through 2027 to meet increasing demand related to AI and advanced processing, driving improved fab utilization rate for global semiconductor production capacity. Moreover, new applications in advanced packaging and high-bandwidth memory (HBM) production, which require additional wafers, are contributing to the rising need for silicon wafers. Such applications include temporary or permanent carrier wafers, interposers, device separation into chiplets, and memory/logic array separation.
Silicon wafers are the fundamental building material for the majority of semiconductors, which are vital components of all electronic devices. The highly engineered thin disks, produced in diameters of up to 300 mm, serve as the substrate material on which most semiconductor devices, or chips, are fabricated.
All data cited in this release include polished silicon wafers and epitaxial silicon wafers shipped by wafer manufacturers to end users. The data does not include non-polished or reclaimed wafers.
The SEMI annual silicon shipment forecast is developed based on input from the members of the Silicon Manufacturers Group (SMG). The SMG is a sub-committee of the SEMI Electronic Materials Group (EMG) and is open to SEMI members involved in manufacturing polycrystalline silicon, monocrystalline silicon or silicon wafers (e.g., as cut, polished, epi). The SMG facilitates collective efforts on issues related to the silicon industry including the development of market information and statistics about the silicon and semiconductor industries.
Suggested Items
Biden-Harris Administration Announces CHIPS Incentives Awards with GlobalWafers to Support Domestic Production of Silicon Wafers
12/18/2024 | U.S. Department of CommerceThe Biden-Harris Administration announced that the U.S. Department of Commerce issued direct funding awards to GlobalWafers America, LLC (GWA) and MEMC LLC (MEMC), subsidiaries of GlobalWafers Co., Ltd. (GlobalWafers), of up to $406 million under the CHIPS Incentives Program’s Funding Opportunity for Commercial Fabrication Facilities.
Toray Engineering Launches TRENG-PLP Coater: Panel Level Coater for Advanced Semiconductor Packaging
12/17/2024 | ACCESSWIREToray Engineering Co., Ltd. has developed the TRENG-PLP Coater, a high-accuracy coating device for panel level packaging PLP is an advanced semiconductor packaging technology, for which there is growing demand particularly from AI servers and data centers. Sales of the TRENG-PLP Coater will commence in December 2024.
onsemi Acquires Silicon Carbide JFET Technology to Enhance Its Power Portfolio for AI Data Centers
12/13/2024 | onsemionsemi announced that it has entered into an agreement to acquire the Silicon Carbide Junction Field-Effect Transistor (SiC JFET) technology business, including the United Silicon Carbide subsidiary, from Qorvo for $115 million in cash.
Aeluma Secures NASA Contract to Advance Quantum Dot Photonic Integrated Circuits for Aerospace and AI Applications
11/25/2024 | ACCESSWIREAeluma, Inc., a semiconductor company specializing in high-performance, scalable technologies for mobile, automotive, AI, defense and aerospace, communication and quantum computing, announced it has been awarded a contract by NASA to develop quantum dot photonic integrated circuits (PICs) on silicon.
Zero Defects International to Exhibit at Silicon Valley Expo and Tech Forum
11/19/2024 | Zero Defects InternationalZero Defects International [ZDI] has announced their participation as an exhibitor at the Silicon Valley Expo and Tech Forum. It will be held at the Fremont Marriott Silicon Valley.