HaiLa Technologies Releases Extreme Low-Power Development Platform for Wi-Fi Communications
January 6, 2025 | BUSINESS WIREEstimated reading time: 1 minute
HaiLa Technologies, a supplier of advanced low power wireless semiconductor solutions, introduced a new development platform to better support developers and researchers in creating extremely low power connected solutions.
The HaiLa EVAL2000 development board features the HaiLa BSC2000 Passive Backscatter on Wi-Fi chip combined with ST Microelectronics’ ultra-low power MCU, the STM32U0.
Leveraging off-the-shelf Wi-Fi infrastructure, HaiLa’s BSC2000 allows system architects to easily create extremely low-power designs with connectivity to any sensor. The EVAL2000 offers GPIO, I2C and SPI sensor interfaces. Sensor integration is done in firmware on the MCU. The EVAL2000 will be shown at CES with the ST Microelectronics ISM330ISN Motion Sensor.
"The EVAL2000 development kit enables rapid prototyping for a wide range of connected sensor applications over Wi-Fi,” stated Patricia Bower, VP Product Management at HaiLa. “The kit leverages ST Microelectronics’ lowest-power processor, allowing developers to showcase IoT device data communication with unprecedented, extremely low power consumption.”
As demand soars for connected devices, the need to address their environmental impact is critical. The largest contributor to power consumption in battery-powered Wi-Fi devices is typically the radio. HaiLa’s achievements in aggressively reducing radio power will help tackle the growing challenge of battery waste attributed to IoT devices.
Passive backscatter over Wi-Fi paves the way to reducing power for connected devices to near zero-energy. HaiLa’s backscatter adaptation uses a fraction of the power of typical Wi-Fi radio architectures, enabling both smaller batteries, a single battery over product life, or no battery at all by leveraging harvested energy.
The EVAL2000 reference design is also offered as a power- and size-optimized EVAL3000, which allows the system to operate battery-free, relying on harvested ambient light energy. The EVAL3000 sensor tag design consumes 60µW at a 5 second sensor polling interval.
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
ROHM Develops Ultra-Compact CMOS Op Amp: Delivering Industry-Leading Ultra-Low Circuit Current
09/11/2025 | ROHMROHM’s ultra-compact CMOS Operational Amplifier (op amp) TLR1901GXZ achieves the industry’s lowest operating circuit current.
Zhen Ding Technology Highlights AI-Driven Transformation of the PCB Industry at SEMICON Taiwan 2025
09/11/2025 | Zhen Ding TechnologyArtificial intelligence (AI) is expanding rapidly, with almost no field left untouched by the wave of computing power-driven transformation.
Hitachi Unveils $1B U.S. Investment in Critical Grid Infrastructure
09/05/2025 | Hitachi EnergyHitachi Energy, a wholly owned subsidiary of Hitachi, Ltd., and global leader in electrification, today announced a historic investment of more than $1 billion USD to expand the production of critical electrical grid infrastructure in the United States.
Wisdom From Data-center Power Pioneer Mike Mosman
09/02/2025 | Barry Matties, I-Connect007Few engineers have moved the levers of modern electronics more decisively than Mike Mosman. From the pre-email computer rooms of the 1980s to today’s hyperscale campuses cranking out AI cycles, the retired power engineer and co-founder of CCG Facilities Integration has spent four decades proving that uptime is a design discipline, not a hope.
Connect the Dots: How to Avoid Five Common Causes of Board Failure
09/04/2025 | Matt Stevenson -- Column: Connect the DotsBoards fail for various reasons, and because I’ve been part of the PCB industry for a long time, I’ve seen most of the reasons for failure. As part of my ongoing crusade to help designers design for the reality of manufacturing, here are five common causes for board failure and how to avoid them.