-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current Issue
The Legislative Outlook: Helping or Hurting?
This month, we examine the rules and laws shaping the current global business landscape and how these factors may open some doors but may also complicate business operations, making profitability more challenging.
Advancing the Advanced Materials Discussion
Moore’s Law is no more, and the advanced material solutions to grapple with this reality are surprising, stunning, and perhaps a bit daunting. Buckle up for a dive into advanced materials and a glimpse into the next chapters of electronics manufacturing.
Inventing the Future With SEL
Two years after launching its state-of-the-art PCB facility, SEL shares lessons in vision, execution, and innovation, plus insights from industry icons and technology leaders shaping the future of PCB fabrication.
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
Dongguk University Researchers Advance Lithium-Ion Battery Technology with Hybrid Anode Material
April 14, 2025 | PRNewswireEstimated reading time: 2 minutes
Researchers from Dongguk University have achieved a significant breakthrough in lithium-ion battery technology by developing a novel hybrid anode material. This innovative study introduces a hierarchical heterostructure composite that optimizes material interfaces at the nanoscale, resulting in remarkable enhancements in energy storage capacity and long-term cycling stability. This engineered structure integrates graphene oxide's superior conductivity with the energy storage capabilities of nickel-iron compounds for future electronics and energy solutions.
Lithium-ion batteries are the dominant energy storage technology powering everything from portable electronics to electric vehicles and renewable energy systems. However, the demand for higher energy density, faster charging, and longer lifespans necessitates continuous innovation.
Researchers, led by Professor Jae-Min Oh of Dongguk University, in collaboration with Seung-Min Paek of Kyungpook National University, are addressing these challenges by engineering materials at the nanoscale. Their work, available online on January 28, 2025, and published in volume 506 of the Chemical Engineering Journal on January 15, 2025, focuses on a novel hybrid material designed to maximize the synergistic effects of its components. This innovative composite is a hierarchical heterostructure that combines reduced graphene oxide (rGO) with nickel-iron layered double hydroxides (NiFe-LDH). This unique composite leverages the properties of its components: rGO provides a conductive network for electron transport, and the nickel-iron-oxide components enable fast charge storage through a pseudocapacitive mechanism. The key to this innovative design is the abundance of grain boundaries, which facilitate efficient charge storage.
To achieve the final composite, the researchers employed a layer-by-layer self-assembly technique using polystyrene (PS) bead templates. First, the PS beads were coated with GO and NiFe-LDH precursors. The templates were then removed, leaving behind a hollow sphere architecture. Following this, a controlled thermal treatment induced a phase transformation in NiFe-LDH, leading to the formation of nanocrystalline nickel-iron oxide (NiFe₂O₄) and amorphous nickel oxide (a-NiO), while simultaneously reducing GO to rGO. This synthesis resulted in a well-integrated hybrid composite (rGO/NiFe₂O₄/a-NiO), with enhanced conductivity making it an efficient anode material for lithium-ion batteries. This hollow structure prevents direct contact between the a-NiO/NiFe₂O₄ nanoparticles and the electrolyte, improving stability.
Advanced characterization techniques, such as X-ray diffraction and transmission electron microscopy, were then used to confirm the composite's formation. Electrochemical tests revealed the material's exceptional performance as a lithium-ion battery anode. The anode demonstrated a high specific capacity of 1687.6 mA h g−1 at a current density of 100 mA g−1 after 580 cycles, surpassing conventional materials and highlighting its excellent cycling stability. Furthermore, the material exhibited good rate performance, maintaining high capacity even at significantly increased charge/discharge rates.
Professor Seung-Min Paek emphasized the collaborative nature of the research, "This breakthrough was made possible through close cooperation between experts in diverse materials. By combining our strengths, we were able to design and optimize this hybrid system more effectively. "
Professor Jae-Min Oh added, "We anticipate that, in the near future, energy storage materials will move beyond simply improving individual components. Instead, they will involve multiple interacting materials that create synergy, resulting in more efficient and reliable energy storage devices. This research offers a pathway to smaller, lighter, and more efficient energy storage for next-generation electronic devices."
This development targets significantly improved batteries (longer life, faster charge, lighter) within 5-10 years, benefiting both device users and sustainable energy initiatives.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Singapore’s Largest Industrial District Cooling System Begins Operations to Support STMicroelectronics’ Decarbonization Strategy
10/27/2025 | STMicroelectronicsSTMicroelectronics, a global semiconductor leader serving customers across the spectrum of electronics applications, and SP Group (SP), a leading utilities group in the Asia Pacific and Singapore’s national grid operator, have commenced operations for Singapore’s largest industrial district cooling system at STMicroelectronics’ (ST) Ang Mo Kio TechnoPark.
SemiQon's Cryogenic Chip Technology for Quantum Computing and Space Applications Receives Award from EARTO
10/17/2025 | PRNewswireEARTO, the organisation of the European Research and Technology Organisations, awarded SemiQon and VTT first prize in the "Impact Expected" category on 14 October 2025 in Brussels for a pioneering cryogenic CMOS (complementary metal-oxide semiconductor) chip innovation.
Optimum Energy Powers Up Partnership with Conference USA
10/17/2025 | BUSINESS WIREOptimum Energy, a leading energy as a service provider for higher education, announced it will serve as a premier corporate sponsor for Conference USA (CUSA).
SemiQon's Cryogenic Chip Technology for Quantum Computing and Space Applications Receives Award from EARTO
10/16/2025 | PRNewswireEARTO, the organisation of the European Research and Technology Organisations, awarded SemiQon and VTT first prize in the "Impact Expected" category on 14 October 2025 in Brussels for a pioneering cryogenic CMOS (complementary metal-oxide semiconductor) chip innovation.
The MAPT Roadmap - A Plan to Revitalize the Semiconductor Industry for Decades to Come
10/15/2025 | BUSINESS WIRESemiconductor Research Corporation (SRC) is pleased to unveil the Microelectronics and Advanced Packaging (MAPT) Roadmap, crafted through the collective effort of approximately 300 individuals representing 112 organizations from industry, academia, and government.