-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueAdvancing the Advanced Materials Discussion
Moore’s Law is no more, and the advanced material solutions to grapple with this reality are surprising, stunning, and perhaps a bit daunting. Buckle up for a dive into advanced materials and a glimpse into the next chapters of electronics manufacturing.
Inventing the Future With SEL
Two years after launching its state-of-the-art PCB facility, SEL shares lessons in vision, execution, and innovation, plus insights from industry icons and technology leaders shaping the future of PCB fabrication.
Sales: From Pitch to PO
From the first cold call to finally receiving that first purchase order, the July PCB007 Magazine breaks down some critical parts of the sales stack. To up your sales game, read on!
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
Dongguk University Researchers Advance Lithium-Ion Battery Technology with Hybrid Anode Material
April 14, 2025 | PRNewswireEstimated reading time: 2 minutes
Researchers from Dongguk University have achieved a significant breakthrough in lithium-ion battery technology by developing a novel hybrid anode material. This innovative study introduces a hierarchical heterostructure composite that optimizes material interfaces at the nanoscale, resulting in remarkable enhancements in energy storage capacity and long-term cycling stability. This engineered structure integrates graphene oxide's superior conductivity with the energy storage capabilities of nickel-iron compounds for future electronics and energy solutions.
Lithium-ion batteries are the dominant energy storage technology powering everything from portable electronics to electric vehicles and renewable energy systems. However, the demand for higher energy density, faster charging, and longer lifespans necessitates continuous innovation.
Researchers, led by Professor Jae-Min Oh of Dongguk University, in collaboration with Seung-Min Paek of Kyungpook National University, are addressing these challenges by engineering materials at the nanoscale. Their work, available online on January 28, 2025, and published in volume 506 of the Chemical Engineering Journal on January 15, 2025, focuses on a novel hybrid material designed to maximize the synergistic effects of its components. This innovative composite is a hierarchical heterostructure that combines reduced graphene oxide (rGO) with nickel-iron layered double hydroxides (NiFe-LDH). This unique composite leverages the properties of its components: rGO provides a conductive network for electron transport, and the nickel-iron-oxide components enable fast charge storage through a pseudocapacitive mechanism. The key to this innovative design is the abundance of grain boundaries, which facilitate efficient charge storage.
To achieve the final composite, the researchers employed a layer-by-layer self-assembly technique using polystyrene (PS) bead templates. First, the PS beads were coated with GO and NiFe-LDH precursors. The templates were then removed, leaving behind a hollow sphere architecture. Following this, a controlled thermal treatment induced a phase transformation in NiFe-LDH, leading to the formation of nanocrystalline nickel-iron oxide (NiFe₂O₄) and amorphous nickel oxide (a-NiO), while simultaneously reducing GO to rGO. This synthesis resulted in a well-integrated hybrid composite (rGO/NiFe₂O₄/a-NiO), with enhanced conductivity making it an efficient anode material for lithium-ion batteries. This hollow structure prevents direct contact between the a-NiO/NiFe₂O₄ nanoparticles and the electrolyte, improving stability.
Advanced characterization techniques, such as X-ray diffraction and transmission electron microscopy, were then used to confirm the composite's formation. Electrochemical tests revealed the material's exceptional performance as a lithium-ion battery anode. The anode demonstrated a high specific capacity of 1687.6 mA h g−1 at a current density of 100 mA g−1 after 580 cycles, surpassing conventional materials and highlighting its excellent cycling stability. Furthermore, the material exhibited good rate performance, maintaining high capacity even at significantly increased charge/discharge rates.
Professor Seung-Min Paek emphasized the collaborative nature of the research, "This breakthrough was made possible through close cooperation between experts in diverse materials. By combining our strengths, we were able to design and optimize this hybrid system more effectively. "
Professor Jae-Min Oh added, "We anticipate that, in the near future, energy storage materials will move beyond simply improving individual components. Instead, they will involve multiple interacting materials that create synergy, resulting in more efficient and reliable energy storage devices. This research offers a pathway to smaller, lighter, and more efficient energy storage for next-generation electronic devices."
This development targets significantly improved batteries (longer life, faster charge, lighter) within 5-10 years, benefiting both device users and sustainable energy initiatives.
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Understanding Signal Integrity, the Foundation of High-Speed Digital Design
09/25/2025 | Stephen V. Chavez, Siemens EDASignal integrity has become a critical factor in ensuring reliable performance in high-speed digital systems. As data rates continue to increase, engineers must understand the fundamental principles that govern how signals propagate through transmission lines and how to mitigate common issues that can degrade signal quality.
Infineon, ROHM Collaborate on Silicon Carbide Power Electronics Packages to Enhance Flexibility for Customers
09/25/2025 | InfineonInfineon Technologies AG and ROHM Co., Ltd. have signed a Memorandum of Understanding to collaborate on packages for silicon carbide (SiC) power semiconductors used in applications such as on-board chargers, photovoltaics, energy storage systems and AI data centers.
HPE Now Powers New AI-Ready Supercomputer Set to Transform Environmental Forecasting in New Zealand
09/22/2025 | BUSINESS WIREHPE announced that Earth Sciences New Zealand (formally NIWA) of Aotearoa (New Zealand) selected HPE Cray XD2000, purpose-built for AI and simulation workloads, to accelerate the organization’s environmental science and precision of meteorological forecasting.
It’s Only Common Sense: Sales Strategies for a Virtual World
09/22/2025 | Dan Beaulieu -- Column: It's Only Common SenseLet’s get one thing straight: Remote selling isn’t a temporary inconvenience. It’s not a "phase" that magically disappears if you hold your breath long enough. It’s the new playing field, and if you want to win, you’d better learn how to hit the ball in this new ballpark. Selling through a screen is not harder; it’s just different. Different rules, different tools, same game. Connect with people, build trust, solve problems, and earn the deal. The salespeople who master remote selling will eat the ones who don’t for breakfast.
Electrodeposited Copper Foils Market to Grow by $11.7 Billion Over 2025-2032
09/18/2025 | Globe NewswireThe global electrodeposited copper foils market is poised for dynamic growth, driven by the rising adoption in advanced electronics and renewable energy storage solutions.