-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueIntelligent Test and Inspection
Are you ready to explore the cutting-edge advancements shaping the electronics manufacturing industry? The May 2025 issue of SMT007 Magazine is packed with insights, innovations, and expert perspectives that you won’t want to miss.
Do You Have X-ray Vision?
Has X-ray’s time finally come in electronics manufacturing? Join us in this issue of SMT007 Magazine, where we answer this question and others to bring more efficiency to your bottom line.
IPC APEX EXPO 2025: A Preview
It’s that time again. If you’re going to Anaheim for IPC APEX EXPO 2025, we’ll see you there. In the meantime, consider this issue of SMT007 Magazine to be your golden ticket to planning the show.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - smt007 Magazine
Dongguk University Researchers Advance Lithium-Ion Battery Technology with Hybrid Anode Material
April 14, 2025 | PRNewswireEstimated reading time: 2 minutes
Researchers from Dongguk University have achieved a significant breakthrough in lithium-ion battery technology by developing a novel hybrid anode material. This innovative study introduces a hierarchical heterostructure composite that optimizes material interfaces at the nanoscale, resulting in remarkable enhancements in energy storage capacity and long-term cycling stability. This engineered structure integrates graphene oxide's superior conductivity with the energy storage capabilities of nickel-iron compounds for future electronics and energy solutions.
Lithium-ion batteries are the dominant energy storage technology powering everything from portable electronics to electric vehicles and renewable energy systems. However, the demand for higher energy density, faster charging, and longer lifespans necessitates continuous innovation.
Researchers, led by Professor Jae-Min Oh of Dongguk University, in collaboration with Seung-Min Paek of Kyungpook National University, are addressing these challenges by engineering materials at the nanoscale. Their work, available online on January 28, 2025, and published in volume 506 of the Chemical Engineering Journal on January 15, 2025, focuses on a novel hybrid material designed to maximize the synergistic effects of its components. This innovative composite is a hierarchical heterostructure that combines reduced graphene oxide (rGO) with nickel-iron layered double hydroxides (NiFe-LDH). This unique composite leverages the properties of its components: rGO provides a conductive network for electron transport, and the nickel-iron-oxide components enable fast charge storage through a pseudocapacitive mechanism. The key to this innovative design is the abundance of grain boundaries, which facilitate efficient charge storage.
To achieve the final composite, the researchers employed a layer-by-layer self-assembly technique using polystyrene (PS) bead templates. First, the PS beads were coated with GO and NiFe-LDH precursors. The templates were then removed, leaving behind a hollow sphere architecture. Following this, a controlled thermal treatment induced a phase transformation in NiFe-LDH, leading to the formation of nanocrystalline nickel-iron oxide (NiFe₂O₄) and amorphous nickel oxide (a-NiO), while simultaneously reducing GO to rGO. This synthesis resulted in a well-integrated hybrid composite (rGO/NiFe₂O₄/a-NiO), with enhanced conductivity making it an efficient anode material for lithium-ion batteries. This hollow structure prevents direct contact between the a-NiO/NiFe₂O₄ nanoparticles and the electrolyte, improving stability.
Advanced characterization techniques, such as X-ray diffraction and transmission electron microscopy, were then used to confirm the composite's formation. Electrochemical tests revealed the material's exceptional performance as a lithium-ion battery anode. The anode demonstrated a high specific capacity of 1687.6 mA h g−1 at a current density of 100 mA g−1 after 580 cycles, surpassing conventional materials and highlighting its excellent cycling stability. Furthermore, the material exhibited good rate performance, maintaining high capacity even at significantly increased charge/discharge rates.
Professor Seung-Min Paek emphasized the collaborative nature of the research, "This breakthrough was made possible through close cooperation between experts in diverse materials. By combining our strengths, we were able to design and optimize this hybrid system more effectively. "
Professor Jae-Min Oh added, "We anticipate that, in the near future, energy storage materials will move beyond simply improving individual components. Instead, they will involve multiple interacting materials that create synergy, resulting in more efficient and reliable energy storage devices. This research offers a pathway to smaller, lighter, and more efficient energy storage for next-generation electronic devices."
This development targets significantly improved batteries (longer life, faster charge, lighter) within 5-10 years, benefiting both device users and sustainable energy initiatives.
Suggested Items
Forge Nano Secures $40M to Scale U.S. Battery Manufacturing and Commercial Semiconductor Equipment Businesses
05/02/2025 | Forge NanoForge Nano, Inc., a technology company pioneering domestic battery and semiconductor innovations, announced the successful close of $40 million in new funding.
Hikrobot Integrates Wiferion Technology Into AMRs
04/30/2025 | HikrobotIn the automotive industry, every second counts. AMRs have to work without interruption - charging breaks mean less productivity. Hikrobot, one of the world's leading providers of mobile robotics, therefore relies on Wiferion's wireless charging technology, which has already established itself as the standard in the industry.
Hikrobot Integrates Wiferion Technology into AMRs
04/29/2025 | WiferionIn the automotive industry, every second counts. AMRs have to work without interruption - charging breaks mean less productivity. Hikrobot, one of the world's leading providers of mobile robotics, therefore relies on Wiferion's wireless charging technology, which has already established itself as the standard in the industry.
CCL Design, Ynvisible Announce Strategic Partnership to Deliver Scalable Printed Display Solutions
04/28/2025 | CCL DesignCCL Design will integrate Ynvisible's proprietary display technology into its global manufacturing infrastructure and technology portfolio.
Candor Elevates PCB Fabrication Services with Continued Facility Upgrades
04/28/2025 | Candor CircuitsOntario-based circuit board manufacturer, Candor Circuit Boards has recently completed a series of facility upgrades to improve their PCB offerings. These investments will allow Candor to provide higher volumes of complicated boards more efficiently with better yield. The new technology has allowed the company to take on exciting high technology projects and collaborations in industries such as Military and Aerospace, Medical, Energy and more.