-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueEngineering Economics
The real cost to manufacture a PCB encompasses everything that goes into making the product: the materials and other value-added supplies, machine and personnel costs, and most importantly, your quality. A hard look at real costs seems wholly appropriate.
Alternate Metallization Processes
Traditional electroless copper and electroless copper immersion gold have been primary PCB plating methods for decades. But alternative plating metals and processes have been introduced over the past few years as miniaturization and advanced packaging continue to develop.
Technology Roadmaps
In this issue of PCB007 Magazine, we discuss technology roadmaps and what they mean for our businesses, providing context to the all-important question: What is my company’s technology roadmap?
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - pcb007 Magazine
Estimated reading time: 1 minute
Contact Columnist Form
Trouble in Your Tank: Root Cause of Failures in PWB Lamination
Introduction
Understanding the interactions of the materials, oxide treatment, and the lamination process will help you get to the root cause failures in multilayer fabrication.
When troubleshooting multilayer defects, it is necessary to again understand the effect certain process parameters have on quality and reliability. Truly, the quality of a multilayer printed circuit board (prior to desmear/metallization) will depend on several factors that will now be presented.
Interlaminar Bond Strength
There are several quality aspects of a multilayer PCB that should be measured on a regular basis. One key determinant of the reliability of the multilayer package is the interlaminar bond strength. The interlaminar bond strength is the strength of the heat-resistant bond between the pre-preg and the copper foil. Ideally, one strives for optimum resin flow encapsulation of the pre-preg with the treated copper innerlayer. The stronger the bond between the pre-preg and treated copper, the lower the chance of delamination. Figure 1 shows an example of delamination. In general, heat excursions increased the stress within the bond and that will lead to failures. So the bond between the copper and the resin needs to be as robust as possible. The simple definition of delamination is, “a separation between plies within a base material, between a base material and a conductive foil, or any other planar separation within a printed board.” Again, we are referring to a separation. (More on blister and laminate voids in another column.) It is a huge concern that separation of the pre-preg from the copper foil is often misinterpreted for a blister. Indeed it is more serious than that. As an example, higher temperature resin systems may require more adjustments to the printed circuit processes such as: lamination cycle, baking, hole cleaning, drilling and routing. Polyimide resin and cyanate ester are the most commonly used high-temperature resin systems. These resins have Tgs in the 250°C range.Read the full column here.Editor's Note: This column originally appeared in the September 2014 issue of The PCB Magazine.
More Columns from Trouble in Your Tank
Trouble in Your Tank: Interconnect Defect—The Three Degrees of SeparationTrouble in Your Tank: Things You Can Do for Better Wet Process Control
Trouble in Your Tank: Processes to Support IC Substrates and Advanced Packaging, Part 5
Trouble in Your Tank: Materials for PWB Fabrication—Drillability and Metallization
Trouble in Your Tank: Supporting IC Substrates and Advanced Packaging, Part 5
Trouble in Your Tank: Electrodeposition of Copper, Part 6
Trouble in Your Tank: Electrolytic Copper Plating, Part 5
Trouble in Your Tank: Processes to Support IC Substrates and Advanced Packaging, Part 4