Bosch Breakthrough in Graphene Sensor Technology
June 29, 2015 | Graphene Flagship.Estimated reading time: 3 minutes

Graphene Week 2015 is awash with outstanding research results, but one presentation has created quite a stir at this Graphene Flagship conference. To a stunned audience, Robert Roelver of Stuttgart-based engineering firm Bosch reported on Thursday that company researchers, together with scientists at the Max-Planck Institute for Solid State Research, have created a graphene-based magnetic sensor 100 times more sensitive than an equivalent device based on silicon.
Bosch sensor portfolio
Bosch has long been involved in sensor technology, notably in the automotive sector. In 2008, the company expanded beyond its pressure, acceleration and gyroscopic motion sensors, to geomagnetic, temperature, humidity, air quality and sound pressure devices, including for use in consumer electronics devices such as mobile phones. Roelver noted that Bosch is the world’s number one supplier of microelectromechanical sensors, with €1bn in sales.
Bosch looks at graphene
Interested in whether graphene could enable new applications and improved sensor performance, Bosch has been investigating the use of the two-dimensional material in its pressure, magnetic, humidity, gas and sound pressure devices. The first step was to look at fabrication methods.
Top-down approaches to graphene device fabrication such as mechanical and chemical exfoliation would not work on a commercial scale, so Bosch focussed instead on bottom-up techniques such as the thermal decomposition of silicon carbide, and chemical vapour deposition onto metal surfaces. The latter is certainly suited to mass production, and the former possibly so.
Roelver cautioned that graphene-based sensor applications will require 5-10 years before they can compete with established technologies. This is due to the current lack of large-scale wafer-based and transfer-free synthesis techniques.
A graphene-based magnetic sensor
Various substrates were considered by the Bosch and Max-Planck researchers, who in the case of their magnetic sensor settled on hexagonal boron nitride. This is for reasons of both cost and technical performance.
Bosch’s magnetic sensors are based on the Hall effect, in which a magnetic field induces a Lorentz force on moving electric charge carriers, leading to deflection and a measurable Hall voltage. Sensor performance is defined by two parameters: (1) sensitivity, which depends on the number of charge carriers, and (2) power consumption, which varies inversely with charge carrier mobility. It is high carrier mobility that makes graphene useful in such applications, and the results achieved by the Bosch-led team confirm this.
Comparing and contrasting materials, Roelver in his Graphene Week presentation showed that the worst case graphene scenarios roughly match a silicon reference. In the best case scenario, the result is a huge improvement over silicon, with much lower source current and power requirements for a given Hall sensitivity. In short, graphene provides for a high-performance magnetic sensor with low power and footprint requirements.
Graphene sensor 100 times more sensitive
In terms of numbers, the remarkable result shown by Roelver centred on a direct comparison between the sensitivity of a silicon-based Hall sensor with that of the Bosch-MPI graphene device. The silicon sensor has a sensitivity of 70 volts per amp-tesla, whereas with the boron nitride and graphene device the figure is 7,000. That is a jaw-dropping two orders of magnitude improvement, hence the reaction in the conference hall.
After summarising this stunning research result, Roelver concluded on a high note, stressing that Bosch takes graphene very seriously indeed as a future commercial technology.
“We are pleased to see that Graphene Week has been chosen as the forum to disclose such an important technological milestone,” says Andrea Ferrari, chairman of the Executive Board of the Graphene Flagship. “Bosch’s call for large-area integration of graphene into industrial processes fully matches and validates the flagship’s planned investments in this critical area for the mass production of devices.”
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Armstrong Asia Signs MOU with Checkmate Capital Group to Explore Strategic Collaboration
09/15/2025 | GlobeNewswireArmstrong Asia, a leading Singapore-based manufacturer of flexible material solutions with 16 factories across 7 countries in Asia, has signed a Memorandum of Understanding (MOU) with Checkmate Capital Group, LLC (“Checkmate Capital”), a U.S.-based investment and advisory firm active in the Asia-Pacific and North American regions, focused on cross-border transactions in the life sciences, medical technology, and other industries.
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Jeh Aerospace Raises $11M to Boost Aircraft Supply Chain
08/12/2025 | I-Connect007 Editorial TeamJeh Aerospace, the high-precision aerospace and defense manufacturing startup founded by Vishal Sanghavi and Venkatesh Mudragalla, has raised $11 million in a Series A round led by Elevation Capital, with support from General Catalyst, to scale its commercial aircraft supply chain manufacturing in India, according to OEM.
LQDX Inc. Completes Sale of Aluminum Clad Laminate IP to Toyo Aluminium K.K.
07/31/2025 | PR NewswireLQDX, formerly known as Averatek Corp., developer of high-performance materials for advanced semiconductor manufacturing, today announced that it has completed the divestiture of its Aluminum Clad Laminate IP – known as ACL™ – to Toyo Aluminium K.K., a Japan-based global market leader in specialty aluminum-based products for the consumer, electronics and automotive sectors.
Clear Demand Signal Needed for CHIPS Success
08/01/2025 | I-Connect007 Editorial TeamIn July, the National Defense Industrial Association’s (NDIA) Electronics Division released a white paper titled "Clear Demand Signal Needed for CHIPS Success." The paper highlights the importance of the CHIPS and Science Act’s $52 billion investment in revitalizing secure domestic semiconductor production, but also raises the alarm that the Act mainly addresses supply challenges and has not established mechanisms to ensure ongoing demand for U.S.-based microelectronics production.