U-M to Drive-test 3D-printed "SmartCarts"
July 13, 2015 | University of Michigan RegentsEstimated reading time: 3 minutes
A fleet of autonomous "SmartCarts"—high-tech, 3D-printed, low-speed electric vehicles—could one day zip around the University of Michigan's North Campus, taking students, professors and staff to class, labs and offices while also serving as one of the first test beds for on-demand autonomous transit.
"Think Uber, but with low-speed, autonomous cars," said Edwin Olson, an associate professor of electrical engineering and computer science who leads the project. "The goal of SmartCarts is for us to begin understanding the challenges of a transportation-on-demand system built around autonomous cars."
In an early step toward that goal, U-M researchers today received a custom, 3D-printed vehicle from technology company Local Motors. The company unveiled both the low-speed vehicle and its first 3D-printed road-ready car at a press conference in Tempe, Ariz.
U-M's vehicle—one of three being built for university research—will arrive on U-M's campus next week. Over the next year, U-M researchers will develop autonomy capabilities and build a mobile phone interface users can use to request a ride. They'll test the vehicle at Mcity, the autonomous and connected vehicle test site that's operated by the Mobility Transformation Center, a public/private partnership headquartered at U-M.
"On this project, we're deliberately 'cheating' on the autonomy as much as we can—not because we can't build autonomous cars, but because we need a working test bed now so that we can begin to look at all of the other challenges of an on-demand system" Olson said.
Those other challenges include understanding passengers' preferences and expectations, coordinating the routes of a fleet of vehicles, and figuring out how to balance supply and demand.
"These factors—not just the self-driving technology—are critical to the economic viability and social acceptance of a full-scale transportation service," Olson said.
At Mcity and later on North Campus, researchers will experiment with methods to simplify the autonomy challenges that take advantage of the smaller scale of a campus. They could add landmarks to help the vehicles navigate, for example, or even paint a blue line on the asphalt for the carts to follow. These steps help make autonomy safe and cheap, but they're difficult to accomplish on a national scale, Olson said. Beyond college campuses, low-speed autonomous transit systems could be useful in places like corporate campuses, amusement parks, airports, assisted living communities and city centers.
U-M's new vehicle has a power train derived from a traditional golf cart, but by working with Local Motors, the rest of the vehicle has been re-invented for this project. The body is 3D printed out of Lego brick plastic reinforced with fiber for strength. The unique manufacturing process means if the U-M researchers decide they need a bracket to hold a sensor, for example, or a more innovative dashboard without a steering wheel, Local Motors can print a new component in a matter of hours.
"The advantage is speed of design and manufacturing. The 3D printing process and our co-creation process lets us and our partners be creative fast," said Corey Clothier, Local Motors' autonomous vehicle lead. "We're excited to partner with the University of Michigan on this. They're real leaders in autonomous systems and their approach on this is brilliantly simple. We look forward to seeing it unfold."
Later this year or early next year, U-M will receive a second vehicle and the research team will conduct a pilot at Mcity.
"Our focus is on transportation as a system," said David Munson, the Robert J. Vlasic Dean of Engineering. "Lots of people are talking about this as the way of the future, but we're aiming to build a test bed that will allow us to stop talking and start doing. If we can put such a system into service, it would be a huge research enabler on campus, and it would be one of only a few like it in the world."
The pilot project is funded for one year through the Mobility Transformation Center. Along with Olson, Ryan Eustice, associate professor of naval architecture and marine engineering, will also contribute.
Suggested Items
Meet the Author Podcast: Martyn Gaudion Unpacks the Secrets of High-Speed PCB Design
07/10/2025 | I-Connect007In this special Meet the Author episode of the On the Line with… podcast, Nolan Johnson sits down with Martyn Gaudion, signal integrity expert, managing director of Polar Instruments, and three-time author in I-Connect007’s popular The Printed Circuit Designer’s Guide to... series.
TTCI Joins Printed Circuit Engineering Association to Strengthen Design-to-Test Collaboration and Workforce Development
07/09/2025 | The Test Connection Inc.The Test Connection Inc. (TTCI), a leading provider of electronic test and manufacturing solutions, is proud to announce its membership in the Printed Circuit Engineering Association (PCEA), further expanding the company’s efforts to support cross-functional collaboration, industry standards, and technical education in the printed circuit design and manufacturing community.
Study on Resonance Mitigation in Metallic Shielding for Integrated Circuits
07/08/2025 | Maria Cuesta-Martin, Victor Martinez, Vidal Gonzalez Aguado, Würth ElektronikInherent cavity resonant modes often lead to significant degradation of shielding effectiveness, responsible for unwanted electromagnetic coupling. Cavity resonant modes of the metal shielding enclosure can produce two adverse problems: the mutual coupling among different RF modules and shielding effectiveness reduction of the metal enclosure. The cabinets serve to shield certain components from electromagnetic interference (EMI). However, these cavities present some resonance peaks at 5 GHz, making it impossible to use them at higher frequencies.
The Global Electronics Association Releases IPC-8911: First-Ever Conductive Yarn Standard for E-Textile Application
07/02/2025 | Global Electronics AssociationThe Global Electronics Association announces the release of IPC-8911, Requirements for Conductive Yarns for E-Textiles Applications. This first-of-its-kind global standard establishes a clear framework for classifying, designating, and qualifying conductive yarns—helping to address longstanding challenges in supply chain communication, product testing, and material selection within the growing e-textiles industry.
Magnalytix and Foresite to Host Technical Webinar on SIR Testing and Functional Reliability
06/26/2025 | MAGNALYTIXMagnalytix, in collaboration with Foresite Inc., is pleased to announce an upcoming one-hour Webinar Workshop titled “Comparing SIR IPC B-52 to Umpire 41 Functional & SIR Test Method.” This session will be held on July 24, 2025, and is open to professionals in electronics manufacturing, reliability engineering, and process development seeking insights into new testing standards for climatic reliability.