-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueWhat's Your Sweet Spot?
Are you in a niche that’s growing or shrinking? Is it time to reassess and refocus? We spotlight companies thriving by redefining or reinforcing their niche. What are their insights?
Moving Forward With Confidence
In this issue, we focus on sales and quoting, workforce training, new IPC leadership in the U.S. and Canada, the effects of tariffs, CFX standards, and much more—all designed to provide perspective as you move through the cloud bank of today's shifting economic market.
Intelligent Test and Inspection
Are you ready to explore the cutting-edge advancements shaping the electronics manufacturing industry? The May 2025 issue of SMT007 Magazine is packed with insights, innovations, and expert perspectives that you won’t want to miss.
- Articles
- Columns
- Links
- Media kit
||| MENU - smt007 Magazine
EMI-caused EOS Sources in Automated Equipment
July 23, 2015 | Vladimir Kraz, OnFILTER Inc.Estimated reading time: 10 minutes
EMI-caused electrical overstress occurs when a device, such as an IC, is in a contact with grounded parts of a different potential which causes current through the device. While it is fairly easy to establish equipotential environment inside the tool at DC and at 50/60Hz, at high frequencies it becomes very difficult. One of the reasons for that is that at high frequencies conductors behave differently. Even a straight wire becomes an inductor with noticeable impedance and a phase shift.2,3 Metal parts that are not in physical contact can still conduct current because of parasitic capacitance between them. This creates unanticipated current paths and further phase shift. Actuators of robotic arms with associated wiring have substantial inductance and high capacitance to the tool's frame. The result is that high-frequency voltage on the robotic arms is not the same as on the tool's frame. This leads to a possibility of current through the devices.
Figure 6: High-frequency current path through the device in pick-and-place.
While for DC and 50/60Hz metal-to-metal contact is required for current passage, at high frequencies parasitic capacitance offers low impedance to current even without physical contact. Consider as an example an IC suspended on a nozzle of a pick-and-place machine (or, similarly, an IC handler) as shown in Figure 6.
The silicon die of the IC and its leadframe form one plate of a capacitor and the nozzle forms another. Close proximity of these plates provides big enough capacitance and resulting low impedance between the IC and ground of the robotic arm.
The copper of PC Fab which may not be galvanically connected to the tool's grounded frame nevertheless forms even bigger capacitance with the tool's frame and other metal parts of the tool.
Once the IC is placed on the copped pads of the PC Fab, the metal-to-metal final contact closes the circuit and the current now can flow. Strong current with high repetition rate is a viable cause of EOS.
Figure 7: Current through the device in an IC handler.
Figure 7 depicts actual measurements made in an IC handler. The blue trace shows drive pulses of a servo motor; red trace - current through the device. As seen, current pulses are synchronized with the drive pulses. Other (non-synchronized) pulses are associated with other servo motors in the tool (there were total of 6).
It is important to note that these current pulses are continuous -they "hit" the device up to 20,000 times a second every second. This weakens the device structure and can cause latent damage which is more pronounced due to EOS than to ESD exposure4.
Not surprisingly, such current pulses weaken not only the device structure but the tool itself - just like dripping water often causes more damage than an occasional pour. The most wide-spread phenomenon is damage to ball-bearings of servo and variable frequency motors5. Figure 8 shows typical damage to the bearings from ground transient pulses caused by EMI. If such damage occurs to hardened steel, what would it do to small silicon structures of the devices?
Figure 8: Damage to bearings due to high-frequency currents6.
Places of Likely EMI-Caused EOS Exposure
Every place in automated equipment where there is a metal-to-metal contact is a possible source of EMI-caused EOS. Among the tools liable to produce such exposure are:
PCB Assembly
- Pick-and-place tools
- Lead formers
- Lead trimmers
- Wave soldering
- Testers
Device/IC Manufacturing
- IC handlers
- Wire bonders
- Singulators
- Lead formers
- Testers
Acceptable EOS Limits
How would a responsible specialist assess current EMI levels in the tool and how would he specify the "safe" limits? The only document today that specifies maximum acceptable EOS levels in PCB assembly is IPC-A-610-E7. In its section 3.1.1 it states that " equipment must never generate spikes greater than 0.3 volt." For semiconductor device manufacturing ITRS (International Technology Roadmap for Semiconductors - www.ITRS.net) in its Factory Integration Tables8 recommends essentially the same levels today and even lower levels for the near future.
Once your factory has conducted an EMI audit of its tools it would become clear where EMI needs to be mitigated and to what levels.
Other Effects of EMI in Manufacturing
Besides causing electrical overstress noise on power lines (AC and DC) and ground infiltrates data lines. The most frequent result is errors in test. It is not uncommon to test the same board or the device several times until it passes. While such problems are not fatal, they reduce productivity and may lead to a bad board erroneously passing the test and be shipped to a customer.
Page 2 of 3
Suggested Items
Seeing a Future in Mexico
07/09/2025 | Michelle Te, I-Connect007The Global Electronics Association (formerly known as IPC) has been instrumental in fostering a partnership with Guanajuato, a state north of Mexico City with 12 industrial clusters and close to 150 companies involved in electronics. This past spring, Alejandro Hernández, the undersecretary for investment promotion in Guanajuato, attended IPC APEX EXPO 2025 at the invitation of IPC Mexico Director Lorena Villanueva, where he met with several companies to discuss the opportunities available in Mexico. He is inviting electronics-related companies seeking long-term investment in a centrally located area with access to highways, railways, and ports.
The Global Electronics Association Releases IPC-8911: First-Ever Conductive Yarn Standard for E-Textile Application
07/02/2025 | Global Electronics AssociationThe Global Electronics Association announces the release of IPC-8911, Requirements for Conductive Yarns for E-Textiles Applications. This first-of-its-kind global standard establishes a clear framework for classifying, designating, and qualifying conductive yarns—helping to address longstanding challenges in supply chain communication, product testing, and material selection within the growing e-textiles industry.
IPC-CFX, 2.0: How to Use the QPL Effectively
07/02/2025 | Chris Jorgensen, Global Electronics AssociationIn part one of this series, we discussed the new features in CFX Version 2.0 and their implications for improved inter-machine communication. But what about bringing this new functionality to the shop floor? The IPC-CFX-2591 QPL is a powerful technical resource for manufacturers seeking CFX-enabled equipment. The Qualified Product List (QPL) helps streamline equipment selection by listing models verified for CFX compliance through a robust third-party virtual qualification process.
The Knowledge Base: A Conference for Cleaning and Coating of Mission-critical Electronics
07/08/2025 | Mike Konrad -- Column: The Knowledge BaseIn electronics manufacturing, there’s a dangerous misconception that cleaning and coating are standalone options, that they operate in different lanes, and that one can compensate for the other. Let’s clear that up now. Cleaning and conformal coating are not separate decisions. They are two chapters in the same story—the story of reliability.
Advancing Aerospace Excellence: Emerald’s Medford Team Earns Space Addendum Certification
06/30/2025 | Emerald TechnologiesWe’re thrilled to announce a major achievement from our Medford, Oregon facility. Andy Abrigo has officially earned her credentials as a Certified IPC Trainer (CIT) under the IPC J-STD-001 Space Addendum, the leading industry standard for space and military-grade electronics manufacturing.