Improving Wireless Power Transfer with Magnetic Field Enhancement
July 24, 2015 | North Carolina State UniversityEstimated reading time: 1 minute
Research from North Carolina State University and Carnegie Mellon University shows that passing wireless power transfer through a magnetic resonance field enhancer (MRFE) – which can be as simple as a copper loop – can boost the transfer efficiency by at least 100 percent as compared to transferring through air alone. MRFE use could potentially boost transfer efficiency by as much as 5,000 percent in some systems, experts say.
Wireless power transfer works by having a transmitter coil generate a magnetic field; a receiver coil then draws energy from that magnetic field. One of the major roadblocks for development of marketable wireless power transfer technologies is achieving high efficiency.
(image) From left to right: performance of wireless power transfer using an MRFE, a metamaterial, and through air alone.
“Our experimental results show double the efficiency using the MRFE in comparison to air alone,” says David Ricketts, an associate professor of electrical and computer engineering at NC State and corresponding author of a paper describing the work.
Enhancing wireless power efficiency has been a major goal of many research groups. One of the leading candidates proposed for enhancing efficiency has been a technology called metamaterials. “We performed a comprehensive analysis using computer models of wireless power systems and found that MRFE could ultimately be five times more efficient than use of metamaterials and 50 times more efficient than transmitting through air alone,” Ricketts says.
By placing the MRFE between the transmitter and the receiver (without touching either) as an intermediate material, the researchers were able to significantly enhance the magnetic field, increasing its efficiency.
“We realized that any enhancement needs to not only increase the magnetic field the receiver ‘sees,’ but also not siphon off any of the power being put out by the transmitter,” Ricketts says. “The MRFE amplifies the magnetic field while removing very little power from the system.”
The researchers conducted an experiment that transmitted power through air alone, through a metamaterial, and through an MRFE made of the same quality material as the metamaterial. The MRFE significantly outperformed both of the others. In addition, the MRFE is less than one-tenth the volume of metamaterial enhancers.
“This could help advance efforts to develop wireless power transfer technologies for use with electric vehicles, in buildings, or in any other application where enhanced efficiency or greater distances are important considerations,” Ricketts says.
Suggested Items
Elephantech: For a Greener Tomorrow
04/16/2025 | Marcy LaRont, PCB007 MagazineNobuhiko Okamoto is the global sales and marketing manager for Elephantech Inc., a Japanese startup with a vision to make electronics more sustainable. The company is developing a metal inkjet technology that can print directly on the substrate and then give it a copper thickness by plating. In this interview, he discusses this novel technology's environmental advantages, as well as its potential benefits for the PCB manufacturing and semiconductor packaging segments.
Trouble in Your Tank: Organic Addition Agents in Electrolytic Copper Plating
04/15/2025 | Michael Carano -- Column: Trouble in Your TankThere are numerous factors at play in the science of electroplating or, as most often called, electrolytic plating. One critical element is the use of organic addition agents and their role in copper plating. The function and use of these chemical compounds will be explored in more detail.
IDTechEx Highlights Recyclable Materials for PCBs
04/10/2025 | IDTechExConventional printed circuit board (PCB) manufacturing is wasteful, harmful to the environment and energy intensive. This can be mitigated by the implementation of new recyclable materials and technologies, which have the potential to revolutionize electronics manufacturing.
Connect the Dots: Stop Killing Your Yield—The Hidden Cost of Design Oversights
04/03/2025 | Matt Stevenson -- Column: Connect the DotsI’ve been in this industry long enough to recognize red flags in PCB designs. When designers send over PCBs that look great on the computer screen but have hidden flaws, it can lead to manufacturing problems. I have seen this happen too often: manufacturing delays, yield losses, and designers asking, “Why didn’t anyone tell me sooner?” Here’s the thing: Minor design improvements can greatly impact manufacturing yield, and design oversights can lead to expensive bottlenecks. Here’s how to find the hidden flaws in a design and avoid disaster.
Real Time with... IPC APEX EXPO 2025: Tariffs and Supply Chains in U.S. Electronics Manufacturing
04/01/2025 | Real Time with...IPC APEX EXPOChris Mitchell, VP of Global Government Relations for IPC, discusses IPC's concerns about tariffs on copper and their impact on U.S. electronics manufacturing. He emphasizes the complexity of supply chains and the need for policymakers to understand their effects.