New Device Converts DC Electric Field to Terahertz Radiation
August 5, 2015 | AIP.orgEstimated reading time: 2 minutes

Terahertz radiation, the no-man's land of the electromagnetic spectrum, has long stymied researchers. Optical technologies can finagle light in the shorter-wavelength visible and infrared range, while electromagnetic techniques can manipulate longer-wavelength radiation like microwaves and radio waves. Terahertz radiation, on the other hand, lies in the gap between microwaves and infrared, whether neither traditional way to manipulate waves works effectively. As a result, creating coherent artificial sources of terahertz radiation in order to harness it for human use requires some ingenuity.
Difficulties of generating it aside, terahertz radiation has a wide variety of potential applications, particularly in medical and security fields. Because it's a non-ionizing form of radiation, it is generally considered safe to use on the human body. For instance, it can distinguish between tissues of different water content or density, making it a potentially valuable tool for identifying tumors. It could also be used to detect explosives or hidden weapons, or to wirelessly transmit data.
In a step towards more widespread use of terahertz radiation, researchers have designed a new device that can convert a DC electric field into a tunable source of terahertz radiation. Their results are published this week in the Journal of Applied Physics, from AIP Publishing.
This device exploits the instabilities in the oscillation of conducting electrons at the device's surface, a phenomenon known as surface plasmon resonance. To address the terahertz gap, the team created a hybrid semiconductor: a layer of thick conducting material paired with two thin, two-dimensional crystalline layers made from graphene, silicene (a graphene-like material made from silicon instead of carbon), or a two-dimensional electron gas. When a direct current is passed through the hybrid semiconductor, it creates a plasmon instability at a particular wavenumber. This instability induces the emission of terahertz radiation, which can be harnessed with the help of a surface grating that splits the radiation.
By adjusting various parameters -- such as the density of conduction electrons in the material or the strength of the DC electric field -- it is possible to tune the cutoff wavenumber and, consequently, the frequency of the resulting terahertz radiation.
"[Our work] demonstrates a new approach for efficient energy conversation from a dc electric field to coherent, high-power and electrically tunable terahertz emission by using hybrid semiconductors," said Andrii Iurov, a researcher with a dual appointment at the University of New Mexico's Center for High Technology Materials and the City University of New York. "Additionally, our proposed approach based on hybrid semiconductors can be generalized to include other novel two-dimensional materials, such as hexagonal boron nitride, molybdenum disulfide and tungsten diselenide."
Other labs have created artificial sources of terahertz radiation, but this design could enable better imaging capabilities than other sources can provide. "Our proposed devices can retain the terahertz frequency like other terahertz sources but with a much shorter wavelength for an improved spatial resolution in imaging application as well as a very wide frequency tuning range from a microwave to a terahertz wave," said Iurov.
The article, "Tunable surface plasmon instability leading to emission of radiation," is authored by Godfrey Gumbs, Andrii Iurov, Danhong Huang, and Wei Pan. It will appear in the Journal of Applied Physics on August 4, 2015. After that date, it can be accessed here.
The authors of this paper are affiliated with City University of New York, Donostia International Physics Center, Center for High Technology Materials at University of New Mexico, Air Force Research Laboratory and Sandia National Laboratory.
Suggested Items
EIPC Summer Conference 2025: PCB Innovation in Edinburgh
04/18/2025 | EIPCEIPC have very wisely selected this wonderful city in Scotland as the venue for their Summer Conference on June 3-4. Whilst delegates will be distilling the proven information imparted by the speakers in the day, in the evening they will be free spirits at the Conference Dinner.
Transforming the Future of Mobility: DuPont Unveils Silver Nanowire Products in South Korea
04/17/2025 | DuPontDuPont will showcase its state-of-the-art products that incorporate silver nanowire technologies in Hall D, Booth A31 at Electronics Manufacturing Korea (EMK) and Automotive World Korea (AWK) exhibitions from April 16 to 18.
Best Papers from SMTA International Announced
04/10/2025 | SMTAThe SMTA is pleased to announce the Best Papers from SMTA International 2024. The winners were selected by members of the conference technical committee. Awards are given for "Best of Proceedings" as well as "Best Practical and Applications-Based Knowledge" categories. A plaque is given to primary authors of all winning papers for these exceptional achievements.
Thales & Saildrone Integrate Blue Sentry Array with Uncrewed Systems
04/07/2025 | ThalesThales Australia and Saildrone announce successful integration of the Thales Blue Sentry array and Saildrone’s uncrewed systems. A potent new national security capability, now proven at sea
Knocking Down the Bone Pile: Basics of Component Lead Tinning
04/02/2025 | Nash Bell -- Column: Knocking Down the Bone PileThe component lead tinning process serves several critical functions, including removing gold plating, mitigation of tin whiskers, reconditioning of component solderability issues, and alloy conversion from lead-free (Pb-free) to tin-lead or from tin-lead to lead-free for RoHS compliance. We will cover each of these topics in more detail in upcoming columns.