-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueThe Hole Truth: Via Integrity in an HDI World
From the drilled hole to registration across multiple sequential lamination cycles, to the quality of your copper plating, via reliability in an HDI world is becoming an ever-greater challenge. This month we look at “The Hole Truth,” from creating the “perfect” via to how you can assure via quality and reliability, the first time, every time.
In Pursuit of Perfection: Defect Reduction
For bare PCB board fabrication, defect reduction is a critical aspect of a company's bottom line profitability. In this issue, we examine how imaging, etching, and plating processes can provide information and insight into reducing defects and increasing yields.
Voices of the Industry
We take the pulse of the PCB industry by sharing insights from leading fabricators and suppliers in this month's issue. We've gathered their thoughts on the new U.S. administration, spending, the war in Ukraine, and their most pressing needs. It’s an eye-opening and enlightening look behind the curtain.
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
Dry Film Photoresist Thickness Selection Criteria
August 6, 2015 | Karl Dietz, Karl Dietz Consulting LLCEstimated reading time: 1 minute

Dry film photoresist suppliers typically indicate for which process (e.g., print and etch, pattern plate, tent and etch, gold plating) a certain resist type is suitable; however the fabricator still has to select the resist thickness that matches his needs best. The most important thickness selection criteria that come to mind are price, resolution, and yield.
Dry film photoresist with a thinner photosensitive layer tend to have a lower price because of the lower material cost of the resist layer. So it makes sense to use the thinnest resist that still satisfies yield and resolution expectations.
For print and etch, one would choose the thinnest film that still gives acceptable yields. The thinnest resist will also give the best resolution in print and etch because of the more favorable etch channel aspect ratio that will give the best etch factor. The etch channel aspect ratio is defined as the ratio of the total thickness of the resist and the copper to be etched, over the width of the space to be etched. The etch factor is the ratio of vertical etching over lateral etching whereby a high number is more favorable for resolution. High etch channel aspect ratios will result in poorer etch factors. Therefore thinner resist (and thinner copper) give better resolution.
Potential problems that one can get into with films that are too thin for the application are poor resist conformation to a relatively rough copper surface, because there is not enough resist mass to flow and fill the recessed areas of the copper topography, which lead to circuit open defects or so called dish-downs. Another potential problem could be the formation of wrinkles during hot roll lamination. Print and etch resists are typically 25–35 microns thick. The thinnest available dry films are about 20 microns.
For tent and etch, one will have to pick a film that is thick enough to form "tents" over the metalized through-hole openings to hold up against mechanical and/or chemical attack. Historically, these films had to be 50 microns to hold up. In recent years, resists have been improved to give good performance at only 40 micron thickness; in some cases it may be only 35 micron thickness.
Editor's Note: This article originally appeared in the July 2015 issue of The PCB Magazine.
Suggested Items
Copper Price Surge Raises Alarms for Electronics
07/15/2025 | Global Electronics Association Advocacy and Government Relations TeamThe copper market is experiencing major turbulence in the wake of U.S. President Donald Trump’s announcement of a 50% tariff on imported copper effective Aug. 1. Recent news reports, including from the New York Times, sent U.S. copper futures soaring to record highs, climbing nearly 13% in a single day as manufacturers braced for supply shocks and surging costs.
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
07/11/2025 | Andy Shaughnessy, Design007 MagazineThis week, we have quite a variety of news items and articles for you. News continues to stream out of Washington, D.C., with tariffs rearing their controversial head again. Because these tariffs are targeted at overseas copper manufacturers, this news has a direct effect on our industry.I-Connect007 Editor’s Choice: Five Must-Reads for the Week
Digital Twin Concept in Copper Electroplating Process Performance
07/11/2025 | Aga Franczak, Robrecht Belis, Elsyca N.V.PCB manufacturing involves transforming a design into a physical board while meeting specific requirements. Understanding these design specifications is crucial, as they directly impact the PCB's fabrication process, performance, and yield rate. One key design specification is copper thieving—the addition of “dummy” pads across the surface that are plated along with the features designed on the outer layers. The purpose of the process is to provide a uniform distribution of copper across the outer layers to make the plating current density and plating in the holes more uniform.
Trump Copper Tariffs Spark Concern
07/10/2025 | I-Connect007 Editorial TeamPresident Donald Trump stated on July 8 that he plans to impose a 50% tariff on copper imports, sparking concern in a global industry whose output is critical to electric vehicles, military hardware, semiconductors, and a wide range of consumer goods. According to Yahoo Finance, copper futures climbed over 2% following tariff confirmation.
Happy’s Tech Talk #40: Factors in PTH Reliability—Hole Voids
07/09/2025 | Happy Holden -- Column: Happy’s Tech TalkWhen we consider via reliability, the major contributing factors are typically processing deviations. These can be subtle and not always visible. One particularly insightful column was by Mike Carano, “Causes of Plating Voids, Pre-electroless Copper,” where he outlined some of the possible causes of hole defects for both plated through-hole (PTH) and blind vias.