Imec Pushes the Boundaries of Gallium Nitride (GaN) Technology
August 12, 2015 | ImecEstimated reading time: 3 minutes
World-leading nano-electronics research center imec announced today that it is extending its Gallium Nitride-on-Silicon (GaN-on-Si) R&D program, and is now offering joint research on GaN-on-Si 200mm epitaxy and enhancement mode device technology. The extended R&D initiative includes exploration of novel substrates to improve the quality of the epitaxial layers, new isolation modules to increase the level of integration, and the development of advanced vertical devices. Imec welcomes new partners interested in next generation GaN technologies and companies looking for low-volume manufacturing of GaN-on-Si devices to enable the next generation of more efficient and compact power converters.
GaN technology offers faster switching power devices with higher breakdown voltage and lower on-resistance than silicon, making it an outstanding material for advanced power electronic components. Imec’s R&D program on GaN-on-Si was launched to develop a GaN-on-Si process and bring GaN technology towards industrialization. Building on imec’s excellent track record in GaN epi-layer growth, new device concepts and CMOS device integration, imec has now developed a complete 200mm CMOS-compatible GaN process line. Imec’s GaN-on-Si technology is reaching maturity, and companies can gain access to the platform by joining imec’s GaN-on-Si industrial affiliation program (IIAP). The process line is also open to fabless companies interested in low-volume production of GaN-on-Si devices tailored to their specific needs, through dedicated development projects.
Imec’s portfolio includes three types of buffers optimized for breakdown voltage and low traps-related phenomena (i.e. current dispersion): a step graded AlGaN buffer, a super lattice buffer, and a buffer with low-temperature AlN interlayers. Imec explored side-by-side enhancement mode power devices of the MISHEMT and p-GaN HEMT type, as well as a gate-edge terminated Schottky power diode featuring low reverse leakage and low turn-on voltage.
The latest generation of imec enhancement mode power devices shows a threshold voltage beyond +2V, an on-resistance below 10 ohm mm and output current beyond 450 mA/mm. These devices represents the state of the art of enhancement mode power devices.
In this next phase of the GaN program, imec is focusing on further improving the performance and reliability of its current power devices, while in parallel pushing the boundaries of the technology through innovation in substrate technology, higher levels of integration and exploration of novel device architectures.
“Since the program’s launch in July 2009, we have benefited from strong industry engagement, including participation from IDMs, epi-vendors and equipment and material suppliers. This underscores the industrial relevance of our offering,” stated Rudi Cartuyvels, executive vice president of smart systems at imec. “Interested companies are invited to become a partner and actively participate in our program. Imec’s open innovation model allows companies to have early access to next-generation devices and power electronics processes, equipment and technologies and speed up innovation at shared cost.”
About imec
Imec performs world-leading research in nanoelectronics. Imec leverages its scientific knowledge with the innovative power of its global partnerships in ICT, healthcare and energy. Imec delivers industry-relevant technology solutions. In a unique high-tech environment, its international top talent is committed to providing the building blocks for a better life in a sustainable society. Imec is headquartered in Leuven, Belgium, and has offices in Belgium, the Netherlands, Taiwan, USA, China, India and Japan. Its staff of about 2,200 people includes almost 700 industrial residents and guest researchers. In 2014, imec’s revenue (P&L) totaled 363 million euro. Further information on imec can be found at www.imec.be. Stay up to date about what’s happening at imec with the monthly imec magazine, available for tablets and smartphones (as an app for iOS and Android), or via the website www.imec.be/imecmagazine.
Suggested Items
Incap Helps Develop Future Talent in Robotics and Engineering in Finland
05/21/2025 | IncapIncap Corporation continues to invest in the next generation of technology professionals in Finland through its involvement in two national initiatives focused on technical and vocational education.
Jabil, AVL Collaborate on Design and Manufacturing Solutions for Automotive and Transportation Customers
05/21/2025 | BUSINESS WIREJabil Inc., a global manufacturing solutions provider to market-leading automakers, announced it has signed a memorandum of understanding (MOU) with AVL Software and Functions GmbH, the e-drive and software center of AVL List GmbH.
Altus, Danutek Expand Partnership with LPKF to Offer Laser Plastic Welding Solutions
05/21/2025 | Altus GroupAltus Group, a leading supplier of capital equipment and service support for the electronics manufacturing sector in the UK and Ireland, and its sister company Danutek, which serves Central and Eastern Europe, are expanding their technology offering through an enhanced partnership with LPKF, a specialist in laser-based manufacturing solutions.
Deca Announces Agreement with IBM to Bring High-Density Fan-Out Interposer Production to North America
05/20/2025 | Deca TechnologiesDeca Technologies announced the signing of an agreement with IBM to implement Deca’s M-Series™ and Adaptive Patterning® technologies in IBM’s advanced packaging facility in Bromont, Quebec.
Global PCB Connections: Rigid-flex and Flexible PCBs—The Backbone of Modern Electronics
05/20/2025 | Jerome Larez -- Column: Global PCB ConnectionsIn the past decade, flex and rigid-flex PCB technology has become the fastest-growing market segment. As an increasing number of PCB companies develop the capabilities to fabricate this technology, PCB designers are becoming comfortable incorporating these designs into their products.