Compact Lasers Could be Key to Next-Generation Sensors
August 13, 2015 | Northwestern UniversityEstimated reading time: 1 minute

The invisible chemicals around and within us can tell many complicated stories. By sensing them, security agents can uncover explosive threats. By monitoring them in our breath, doctors can diagnose serious illnesses. And by detecting them on distant planets, astronomers may find signs of life.
These chemicals sometimes reveal their secrets when probed with mid-infrared wavelength lasers. Nearly all chemicals, including explosives, industrial, and pollutants, strongly absorb light in the mid-infrared wavelength region, which is often called the “fingerprint region” for chemicals.
But lasers that work within this range have limitations. Larger, optically pumped lasers are too complex to use out in the field, and compact, lightweight diode laser sources have a limited spectral range. Now Manijeh Razeghi and her team at Northwestern University’s Center for Quantum Devices have used quantum mechanical design, optical engineering, and materials development to create a custom-tailored, compact laser diode by integrating multiple wavelength emitters into a single device.
Capable of emitting broadband wavelengths on demand, the device is smaller than a penny and works at room temperature. It can also emit light at frequencies within +/- 30 percent of the laser central frequency, which has never before been demonstrated in a single-laser diode.
Supported by the National Science Foundation, US Department of Homeland Security, Naval Air Systems Command, and NASA, the research is described online in the August issue of Optics Express journal.
“When we started, we knew this technology had great potential,” said Razeghi, Walter P. Murphy Professor of Electrical Engineering and Computer Science at Northwestern’s McCormick School of Engineering. “It has always been my dream to have such broadband sources, but it took a lot of effort and experience to realize a truly useful device. We can access any frequency in the laser’s range on demand at room temperature, which is ideal for sensing applications.”
Suggested Items
TTCI Joins Printed Circuit Engineering Association to Strengthen Design-to-Test Collaboration and Workforce Development
07/09/2025 | The Test Connection Inc.The Test Connection Inc. (TTCI), a leading provider of electronic test and manufacturing solutions, is proud to announce its membership in the Printed Circuit Engineering Association (PCEA), further expanding the company’s efforts to support cross-functional collaboration, industry standards, and technical education in the printed circuit design and manufacturing community.
GlobalLogic, Volvo Cars Deepen Collaboration to Engineer the Future of Mobility
07/09/2025 | GlobalLogicGlobalLogic Inc., a Hitachi Group Company and leader in digital engineering, has announced it has been selected in Volvo Cars’ partnership ecosystem as one of the strategic partners within engineering services globally.
TT Electronics Achieves ISO 13485 Medical Certification at Mexicali EMS Facility
06/27/2025 | TT ElectronicsThis milestone underscores TT Electronics’ commitment to delivering high-quality, compliant, and reliable manufacturing solutions to its global customers in healthcare and life sciences.
Elementary Mr. Watson: Retro Routers vs. Modern Boards—The Silent Struggle on Your Screen
06/26/2025 | John Watson -- Column: Elementary, Mr. WatsonThere's a story about a young woman preparing a holiday ham. Before putting it in the pan, she cuts off the ends. When asked why, she shrugs and says, "That's how my mom always did it." She asks her mother, who gives the same answer. Eventually, the question reaches Grandma, who laughs and says, "Oh, I only cut the ends off because my pan was too small." This story is a powerful analogy for how many PCB designers approach routing today.
Stephen Winchell Appointed DARPA Director
06/02/2025 | DARPAStephen Winchell was sworn in today as the 24th director of the Defense Advanced Research Projects Agency.