-
-
News
News Highlights
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueIntelligent Test and Inspection
Are you ready to explore the cutting-edge advancements shaping the electronics manufacturing industry? The May 2025 issue of SMT007 Magazine is packed with insights, innovations, and expert perspectives that you won’t want to miss.
Do You Have X-ray Vision?
Has X-ray’s time finally come in electronics manufacturing? Join us in this issue of SMT007 Magazine, where we answer this question and others to bring more efficiency to your bottom line.
IPC APEX EXPO 2025: A Preview
It’s that time again. If you’re going to Anaheim for IPC APEX EXPO 2025, we’ll see you there. In the meantime, consider this issue of SMT007 Magazine to be your golden ticket to planning the show.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - smt007 Magazine
The War on Soldering Defects under Area Array Packages: Head-in-Pillow and Non-Wet Open
August 17, 2015 | Jason Fullerton, AlphaEstimated reading time: 2 minutes

The most difficult aspect of any soldering defect on an area array package is the inability to observe the defect easily. It is important to understand the characteristics of soldering defects in order to identify the proper action to take to mitigate the defects in a soldering process.
Head-in-pillow (HiP) defects are soldering defects on area array packages characterized by a lack of coalescence between the solder paste deposit and the package solder bump. In these defects, the solder paste deposit coalesces properly with itself and typically wets to the PCB land. Displacement of each solder deposit (paste and bump) is a common feature of HiP defects.
Non-wet open (NWO) defects are soldering defects characterized by a lack of wetting to a PCB land by a fully coalesced solder deposit on an area array package. In this defect, the solder paste and the package solder bump coalesce together fully without wetting to the PCB land.
A spherical or nearly spherical shape along the PCB side of the bump is a common feature of NWO defects.
What Head-in-Pillow and Non-Wet Open are not
It is important to discuss defects that can share some symptoms with HiP and NWO, in order to contrast against defects that require different mitigation actions. One example of a defect with similar symptoms to HiP and NWO is insufficient solder paste volume transfer during printing. In this case, it can appear that no wetting has occurred to the land and mimic NWO (especially if no paste has been transferred). If a small amount of paste has been printed, the resulting connection can initially appear to be consistent with HiP. Troubleshooting of HiP and NWO defects should include steps to ensure the solder paste printing process is properly controlled and performing well.
Another defect that can be confused with HiP is cold solder, which is characterized by a lack of coalescence of the solder paste deposit. HiP is a defect that occurs in the presence of a well-defined and controlled reflow process, which ensures coalescence of the solder paste deposit. Diagnosis of a defect as HiP should include an examination of the reflow profile to ensure that the process is not at risk of causing the occurrence of cold solder.
Non-wetting to a PCB land has many causes that should be familiar to most with experience troubleshooting solder defects. These defects can easily be confused with NWO since both defects share a symptom: poor wetting of a coalesced solder bump to the PCB land. The key difference is that NWO defects result in a solder bump that is spherical along the PCB side. A defect that is solely caused by poor PCB solderability will generally demonstrate the same shape as a typical area array solder connection: flatter and wider than a sphere and generally sharing the contour of the land along that interface. Testing the solderability of the PCB lands is an important step when attempting to determine if a wetting defect is a result of NWO defects.
Editor's Note: This article originally appeared in the August 2015 issue of SMT Magazine.
Suggested Items
KYZEN to Focus on Aqueous Cleaning and Stencil Cleaning at SMTA Juarez
05/20/2025 | KYZEN'KYZEN, the global leader in innovative environmentally responsible cleaning chemistries, will exhibit at the SMTA Juarez Expo and Tech Forum, scheduled to take place Thursday, June 5 at the Injectronics Convention Center in Ciudad Jarez, Chihuahua.
Koh Young Installs 24,000th Inspection System at Top 20 EMS
05/14/2025 | Koh YoungKoh Young, the global leader in True 3D measurement-based inspection and metrology solutions, proudly announces the installation of its 24,000th inspection system at a Top 20 Global EMS in Thailand.
Indium’s Karthik Vijay to Present on Dual Alloy Solder Paste Systems at SMTA’s Electronics in Harsh Environments Conference
05/06/2025 | Indium CorporationIndium Corporation Technical Manager, Europe, Africa, and the Middle East Karthik Vijay will deliver a technical presentation on dual alloy solder paste systems at SMTA’s Electronics in Harsh Environments Conference, May 20-22 in Amsterdam, Netherlands.
SolderKing Achieves the Prestigious King’s Award for Enterprise in International Trade
05/06/2025 | SolderKingSolderKing Assembly Materials Ltd, a leading British manufacturer of high-performance soldering materials and consumables, has been honoured with a King’s Award for Enterprise, one of the UK’s most respected business honours.
Knocking Down the Bone Pile: Gold Mitigation for Class 2 Electronics
05/07/2025 | Nash Bell -- Column: Knocking Down the Bone PileIn electronic assemblies, the integrity of connections between components is paramount for ensuring reliability and performance. Gold embrittlement and dissolution are two critical phenomena that can compromise this integrity. Gold embrittlement occurs when gold diffuses into solder joints or alloys, resulting in mechanical brittleness and an increased susceptibility to cracking. Conversely, gold dissolution involves the melting away of gold into solder or metal matrices, potentially altering the electrical and mechanical properties of the joint.