Breakthrough Optics Pave Way for New Class of Intriguing Technologies
August 18, 2015 | Business WireEstimated reading time: 4 minutes
A new class of fascinating technologies — including optics in computing, telecommunications links and switches, and virtually any other optical component — could be created simply by configuring a mesh of light-controlling devices known as interferometers. This is similar to the way electronic semiconductors can fashion the wide array of digital technologies we have at our disposal today.
Optical technologies have the potential to greatly reduce the power consumption of computers, speed up telecommunications, and enhance the sensitivity of chemical and biological sensors. However, the basic building blocks of traditional optics, mirrors and lenses, lack the versatility to readily perform these functions and are difficult to scale to the small sizes needed for many applications.
A fundamentally new approach to designing optical technologies — based on a single device known as a Mach-Zehnder interferometer — could overcome these limitations and lead to a variety of breakthrough applications, thus paving the way for an entirely new class of technologies that could give optics the kind of versatility we see in electronics.
“Recently, optical researchers have begun to understand that these interferometers can be thought of as universal ‘building blocks’ that could enable us to construct essentially any optical device we could imagine,” said Dr. David A.B. Miller, Stanford University, California, USA and author of a letter describing the potential of interferometers published today in The Optical Society’s new high-impact journal Optica.
Previously, this approach would have only been feasible if the Mach-Zehnder interferometers were able to achieve perfect performance — a seemingly unattainable goal.
The new approach described in this paper, however, presents an alternate pathway. Rather than engineering a perfect, single component, researchers propose it’s possible to create a mesh, or array, of interferometers that, when properly programmed, could compensate for its less-than-perfect parts and deliver overall perfect performance.
“It’s this larger scheme that allows us to use reasonable but imperfect versions of these components,” explains Miller.
Interferometers Building the Foundation of Technology
Interferometers are basically any device that separate and re-combine light waves. Like sound waves, light waves can be combined so their signals add together. They also can “interfere” and cancel each other out. This basic “on/off” capability is what would allow interferometers to be harnessed and configured in a variety of ways.
Mach-Zehnder interferometers are specialized versions of these devices that split light from one or two sources into two new beams and then recombine them. They are already used for some specific applications in science and for switching beams in optical communications in optical fibers.
Their more general use in consumer and other applications, however, has been obstructed because of the way that the light is initially split as it enters the device. Ideally, the beams would be split in perfect 50/50 symmetry. In reality, however, the split is not nearly so perfect. This means that when the interferometer recombines the signal it cannot be completely canceled, preventing engineers from completely controlling the optical path.
The ability to combine or cancel the signals along a particular path is critical for technology. Researchers realized, however, that if Mach-Zehnder interferometers could be assembled in large meshes and controlled, it would be possible to create a system that achieved the necessary perfect performance. This would allow the meshes to, in principle, perform any so-called “linear” optical operation, much like computers are able to perform any logical application by controlling on/off functions of semiconductors.
Automatic Control Enables Technology
The final element that enabled this process was the invention of algorithms — essentially the control software — that allowed the meshes to be “self-configuring,” adjusting how they directed the light paths based on the signal received by simple optical sensors embedded in the system.
This self-correcting algorithm allowed the researchers to propose meshes of interferometers with some imperfections and then compensate to make them behave as if they were perfect. The algorithms could then control the “phase shifters” in the interferometers, determining if the signals combined or canceled, by simply monitoring the optical power in various detectors.
“With this development, we are starting to do some things in optics that we have been doing in electronics for some time,” observed Miller. “By using small amounts of electronics and novel algorithms, we can greatly expand the kinds of optics and applications by making completely custom optical devices that will actually work.”
About Optica
Optica is an open-access, online-only journal dedicated to the rapid dissemination of high-impact peer-reviewed research across the entire spectrum of optics and photonics. Published monthly by The Optical Society (OSA), Optica provides a forum for pioneering research to be swiftly accessed by the international community, whether that research is theoretical or experimental, fundamental or applied. Optica maintains a distinguished editorial board of more than 20 associate editors from around the world and is overseen by Editor-in-Chief Alex Gaeta, Cornell University, USA. For more information, visit Optica.
About The Optical Society
Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and entrepreneurs who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. OSA is a founding partner of the National Photonics Initiative and the 2015 International Year of Light.
Suggested Items
TTM Technologies Prepares For the Future with the Acquisition of a Facility in Wisconsin and Land in Penang
07/10/2025 | Globe NewswireTTM Technologies, Inc., a leading global manufacturer of technology solutions including mission systems, radio frequency (RF) components and RF microwave/microelectronic assemblies, quick-turn and technologically advanced printed circuit boards (PCB), announced the acquisition of a 750,000-square-foot facility in Eau Claire, Wisconsin, as well as land rights for an additional future manufacturing site in Penang, Malaysia.
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
06/13/2025 | Marcy LaRont, I-Connect007Today is Friday the 13th, and in much of Western folklore, this is a day when bad luck is lurking. But while Friday the 13th may top Western superstition charts, the global calendar is sprinkled with its own unlucky legends. In Spain and Greece, the bad juju lands on Tuesday the 13th—a day linked to Mars, the god of war, and naturally, chaos. In Italy, it’s Friday the 17th that is feared, thanks to the Roman numeral XVII, which can be rearranged to spell VIXI—Latin for “I have lived” (a poetic way of saying you’re dead).
Roll-to-Roll Technologies for Flexible Devices Set to Grow at 11.5% CAGR
06/11/2025 | GlobeNewswireAccording to the latest study from BCC Research, the “Global Markets for Roll-to-Roll Technologies for Flexible Devices” is expected to reach $69.8 billion by the end of 2029 at a compound annual growth rate (CAGR) of 11.5% from 2024 to 2029.
Qualcomm Acquires Autotalks to Boost V2X Deployments
06/06/2025 | Qualcomm IncorporatedQualcomm Incorporated announced that its subsidiary, Qualcomm Technologies, Inc., has completed the acquisition of Autotalks, an industry leader in direct vehicle-to-everything (V2X) communication solutions.
Mycronic’s Global Technologies Acquires Surfx in the US
06/03/2025 | MycronicMycronic’s Global Technologies division has acquired Surfx Technologies, a company headquartered in the US, providing atmospheric plasma solutions for surface treatment, including cleaning and active oxide removal.