New Arena of Power Generation Set in Motion with MOU
August 21, 2015 | Sandia National LaboratoriesEstimated reading time: 2 minutes
Sandia National Laboratories and eight other companies and research organizations will collaborate to advance a distributed power system that can produce cleaner, more efficient electricity.
The memorandum of understanding focuses on the development of a fossil-fueled energy system based on supercritical carbon dioxide (S-CO2) Brayton cycle technology.
Organizations signing the memorandum with Sandia are Peregrine Turbine Technologies and its subsidiary PTT Distributed Energy Systems of Wiscasset, Maine; Vacuum Process Engineering of Sacramento, California; Mid-South Engineering of Hot Springs, Arkansas; and four partners from Huntsville, Alabama, CFD Research Corp., the U.S. Space & Rocket Center at NASA’s Marshall Space Flight Center, Government Energy Solutions Inc. and the Energy Huntsville Initiative.
Sandia’s Brayton Lab in Albuquerque is the only S-CO2 research facility of its kind. The partners plan pilot testing there using a gas turbine engine based on a 6-megawatt energy-generating system developed by Peregrine Turbine Technologies. A second prototype engine would likely be tested at the U.S. Space & Rocket Center.
“This is the first large collaboration to identify partnerships that will take the Department of Energy’s lab-scale technology and accelerate its development to commercial industry deployment of a highly efficient, low carbon emission, electrical power generator,” said Gary Rochau, manager of Sandia’s Advanced Nuclear Concepts Department.
The agreement allows the organizations to work easily together to accomplish similar goals: advancing the commercialization readiness of the supercritical carbon dioxide Brayton cycle technology, providing world-class testing and analysis and encouraging the establishment of U.S.-based, high-value technology and manufacturing jobs.
The term “supercritical” refers to the semi-liquid state of carbon dioxide when it is above its normal critical temperature and pressure, allowing S-CO2-based systems to operate with high thermal efficiency.
Improving power generation technology is part of Sandia’s mission to strengthen national energy security, Rochau said.“The supercritical carbon dioxide Brayton cycle can replace steam systems in a smaller size with higher efficiency, lower cost, lower emissions and with distributed power generation, reducing the burden on the national power grid,” said Rochau.
Rochau said supercritical carbon dioxide Brayton cycle technology could bring about large-scale improvements in production across most energy sectors, especially solar, nuclear and gas turbine. Potential economic and environmental benefits include reduced fuel consumption and emissions and the ability to generate power from a variety of heat sources, he said.
Peregrine Turbine Technologies is developing a power generation turbine engine that uses super critical carbon dioxide as a working fluid. CEO David Stapp said it could be 30 percent to 60 percent more efficient than current technology.
Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies and economic competitiveness.
Suggested Items
Microchip Expands Space-Qualified FPGA Portfolio with New RT PolarFire® Device Qualifications and SoC Availability
07/10/2025 | MicrochipContinuing to support the evolving needs of space system developers, Microchip Technology has announced two new milestones for its Radiation-Tolerant (RT) PolarFire® technology: MIL-STD-883 Class B and QML Class Q qualification of the RT PolarFire RTPF500ZT FPGA and availability of engineering samples for the RT PolarFire System-on-Chip (SoC) FPGA.
Infineon Advances on 300-millimeter GaN Manufacturing Roadmap as Leading Integrated Device Manufacturer (IDM)
07/10/2025 | InfineonAs the demand for gallium nitride (GaN) semiconductors continues to grow, Infineon Technologies AG is poised to capitalize on this trend and solidify its position as a leading Integrated Device Manufacturer (IDM) in the GaN market.
Bell to Build X-Plane for Phase 2 of DARPA Speed and Runway Independent Technologies (SPRINT) X-Plane Program
07/09/2025 | Bell Textron Inc.Bell Textron Inc., a Textron Inc. company, has been down-selected for Phase 2 of Defense Advanced Research Projects Agency (DARPA) Speed and Runway Independent Technologies (SPRINT) X-Plane program with the objective to complete design, construction, ground testing and certification of an X-plane demonstrator.
2025 ASEAN IT Spending Growth Slows to 5.9% as AI-Powered IT Expansion Encounters Post-Boom Normalization
06/26/2025 | IDCAccording to the IDC Worldwide Black Book: Live Edition, IT spending across ASEAN is projected to grow by 5.9% in 2025 — down from a robust 15.0% in 2024.
DownStream Acquisition Fits Siemens’ ‘Left-Shift’ Model
06/26/2025 | Andy Shaughnessy, I-Connect007I recently spoke to DownStream Technologies founder Joe Clark about the company’s acquisition by Siemens. We were later joined by A.J. Incorvaia, Siemens’ senior VP of electronic board systems. Joe discussed how he, Rick Almeida, and Ken Tepper launched the company in the months after 9/11 and how the acquisition came about. A.J. provides some background on the acquisition and explains why the companies’ tools are complementary.