Turning Clothing into Information Displays
September 3, 2015 | ImecEstimated reading time: 2 minutes
Researchers from Holst Centre (set up by TNO and imec), imec and CMST, imec’s associated lab at Ghent University, have demonstrated the world’s first stretchable and conformable thin-film transistor (TFT) driven LED display laminated into textiles. This paves the way to wearable displays in clothing providing users with feedback.
Wearable devices such as healthcare monitors and activity trackers are now a part of everyday life for many people. Today’s wearables are separate devices that users must remember to wear. The next step forward will be to integrate these devices into our clothing. Doing so will make wearable devices less obtrusive and more comfortable, encouraging people to use them more regularly and, hence, increasing the quality of data collected. A key step towards realizing wearable devices in clothing is creating displays that can be integrated into textiles to allow interaction with the wearer.
“Wearable devices allow people to monitor their fitness and health so they can live full and active lives for longer. But to maximize the benefits wearables can offer, they need to be able to provide feedback on what users are doing as well as measuring it. By combining imec’s patented stretch technology with our expertise in active-matrix backplanes and integrating electronics into fabrics, we’ve taken a giant step towards that possibility,” says Edsger Smits, Senior research scientist at Holst Centre.
The conformable display is very thin and mechanically stretchable. A fine-grain version of the proven meander interconnect technology was developed by the CMST lab at Ghent University and Holst Centre to link standard (rigid) LEDs into a flexible and stretchable display. The LED displays are fabricated on a polyimide substrate and encapsulated in rubber, allowing the displays to be laminated in to textiles that can be washed. Importantly, the technology uses fabrication steps that are known to the manufacturing industry, enabling rapid industrialization.
Following an initial demonstration at the Society for Information Display’s Display Week in San Jose, USA earlier this year, Holst Centre has presented the next generation of the display at the International Meeting on Information Display (IMID) in Daegu, Korea, 18-21 August 2015. Smaller LEDs are now mounted on an amorphous indium-gallium-zinc oxide (a-IGZO) TFT backplane that employs a two-transistor and one capacitor (2T-1C) pixel engine to drive the LEDs. These second-generation displays offer higher pitch and increased, average brightness. The presentation will feature a 32x32 pixel demonstrator with a resolution of 13 pixels per inch (ppi) and average brightness above 200 candelas per square meter (cd/m2). Work is ongoing to further industrialize this technology.
For further background information, we refer to:
9.4: Stretchable 45 × 80 RGB LED Display Using Meander Wiring Technology, Ohmae et al. SID 2015, June 2015
1.2: Rollable, Foldable and Stretchable Displays, Gelinck et al. IMID, Aug. 2015.
13.4 A conformable Active Matrix LED Display, Tripathi et al. IMID, Aug. 2015
Suggested Items
Microchip Expands Space-Qualified FPGA Portfolio with New RT PolarFire® Device Qualifications and SoC Availability
07/10/2025 | MicrochipContinuing to support the evolving needs of space system developers, Microchip Technology has announced two new milestones for its Radiation-Tolerant (RT) PolarFire® technology: MIL-STD-883 Class B and QML Class Q qualification of the RT PolarFire RTPF500ZT FPGA and availability of engineering samples for the RT PolarFire System-on-Chip (SoC) FPGA.
Infineon Advances on 300-millimeter GaN Manufacturing Roadmap as Leading Integrated Device Manufacturer (IDM)
07/10/2025 | InfineonAs the demand for gallium nitride (GaN) semiconductors continues to grow, Infineon Technologies AG is poised to capitalize on this trend and solidify its position as a leading Integrated Device Manufacturer (IDM) in the GaN market.
Bell to Build X-Plane for Phase 2 of DARPA Speed and Runway Independent Technologies (SPRINT) X-Plane Program
07/09/2025 | Bell Textron Inc.Bell Textron Inc., a Textron Inc. company, has been down-selected for Phase 2 of Defense Advanced Research Projects Agency (DARPA) Speed and Runway Independent Technologies (SPRINT) X-Plane program with the objective to complete design, construction, ground testing and certification of an X-plane demonstrator.
2025 ASEAN IT Spending Growth Slows to 5.9% as AI-Powered IT Expansion Encounters Post-Boom Normalization
06/26/2025 | IDCAccording to the IDC Worldwide Black Book: Live Edition, IT spending across ASEAN is projected to grow by 5.9% in 2025 — down from a robust 15.0% in 2024.
DownStream Acquisition Fits Siemens’ ‘Left-Shift’ Model
06/26/2025 | Andy Shaughnessy, I-Connect007I recently spoke to DownStream Technologies founder Joe Clark about the company’s acquisition by Siemens. We were later joined by A.J. Incorvaia, Siemens’ senior VP of electronic board systems. Joe discussed how he, Rick Almeida, and Ken Tepper launched the company in the months after 9/11 and how the acquisition came about. A.J. provides some background on the acquisition and explains why the companies’ tools are complementary.