Sodium-ion Batteries are Potential Power Technology of Future
September 25, 2015 | Purdue UniversityEstimated reading time: 2 minutes
The high cost and scarcity of lithium are driving research to develop alternatives to lithium-ion batteries, especially to meet future needs in energy storage, say researchers from Purdue University in an article about a potential replacement.
Sodium-ion batteries represent a possible alternative, in large part because of sodium's low cost and natural abundance. However, critical advances are needed for sodium-ion technology to fulfill its promise, said Vilas Pol, an associate professor of chemical engineering.
The article appeared earlier this month in Current Opinion in Chemical Engineering. The article was authored by Pol and doctoral students Arthur Dysart and Jialiang Tang.
Lithium-ion batteries are used widely in products from consumer electronics to electric vehicles. However, the need for alternatives is being driven by new and expanding applications including batteries to store power from sources such as solar and wind energy for use on the power grid.
"If everybody wants to start using lithium-ion batteries for multiple purposes, we don't have enough lithium on the planet to sustain that, so we have to find alternatives," Pol said.
Researchers are working to replace lithium-ion batteries' standard internal components with functioning sodium counterparts.
Batteries have two electrodes, called an anode and a cathode. The anodes in most of today's lithium-ion batteries are made of thin layers of stacked graphene called graphite. In lithium-ion batteries, lithium ions can easily fit between graphene layers due to their small size. In sodium-ion batteries, sodium ions cannot pass between the graphitic layers reversibly due to their larger size and bulkier nature. The sodium ions go inside the graphitic layers during charging but do not come back during discharging process.
On the cathode side, new materials have to be developed to replace lithium-containing materials. One option is to replace lithium cobalt oxide cathodes with sodium cobalt oxide cathodes.
One drawback to sodium-ion batteries is that they are slightly heavier than lithium-ion batteries. However, their low cost and abundant nature compared to lithium-ion batteries may outweigh this concern.
"The main advantage of sodium-ion batteries is the potential financial benefit," Dysart said. "Lithium is a very scarce element in the world. We could actually experience a lithium shortage in coming years."
Pol added: "Sodium is more abundant and a thousand times cheaper than lithium. It's even in seawater."
He is leading research at Purdue to improve sodium-ion batteries by using a variety of tailored carbons and their combinations with sodium-alloying materials such as tin and antimony to potentially double the capacity of the anodes, making possible smaller anodes and reducing the size and weight of the batteries.
The challenge with sodium-alloying materials is the great volumetric expansion effect once sodium ions form a high-energy chemical bond.
"It will expand more than 300 percent, and then it shrinks when the battery is discharged as the sodium is taken out," said Pol, also an associate professor of materials engineering. "This great degree of expansion and contraction will cause the anode to fail over time, so we are working on alternative materials breathing architectures to mitigate the expansion."
Tang said, "Perhaps we can confine the expansion locally, similar to breathing lungs. When we breathe our lungs expand and contract quite a bit, but we don't expand."
The sodium alloying materials in combination with carbon could bring higher performance anodes that overcome limitations in conventional carbon anodes.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Curing and Verification in PCB Shadow Areas
09/17/2025 | Doug Katze, DymaxDesign engineers know a simple truth that often complicates electronics manufacturing: Light doesn’t go around corners. In densely populated PCBs, adhesives and coatings often fail to fully cure in shadowed regions created by tall ICs, connectors, relays, and tight housings.
Marcy’s Musings: Advancing the Advanced Materials Discussion
09/17/2025 | Marcy LaRont -- Column: Marcy's MusingsAs the industry’s most trusted global source of original content about the electronics supply chain, we continually ask you about your concerns, what you care about, and what you most want to learn about. Your responses are insightful and valuable. Thank you for caring enough to provide useful feedback and engage in dialogue.
September 2025 PCB007 Magazine: The Future of Advanced Materials
09/16/2025 | I-Connect007 Editorial TeamMoore’s Law is no more, and the advanced material solutions being developed to grapple with this reality are surprising, stunning, and perhaps a bit daunting. Buckle up for a dive into advanced materials and a glimpse into the next chapters of electronics manufacturing.
I-Connect007 Launches Advanced Electronics Packaging Digest
09/15/2025 | I-Connect007I-Connect007 is pleased to announce the launch of Advanced Electronics Packaging Digest (AEPD), a new monthly digital newsletter dedicated to one of the most critical and rapidly evolving areas of electronics manufacturing: advanced packaging at the interconnect level.
Panasonic Industry will Double the Production Capacity of MEGTRON Multi-layer Circuit Board Materials Over the Next Five Years
09/15/2025 | Panasonic Industry Co., Ltd.Panasonic Industry Co., Ltd., a Panasonic Group company, announced plans for a major expansion of its global production capacity for MEGTRON multi-layer circuit board materials today. The company plans to double its production over the next five years to meet growing demand in the AI server and ICT infrastructure markets.