Frustrated Magnets Point Towards New Memory
September 25, 2015 | University of GroningenEstimated reading time: 2 minutes
Theoretical physicists from the University of Groningen, supported by the FOM Foundation, have discovered that so-called 'frustrated magnets' can produce skyrmions, tiny magnetic vortices that may be used in memory storage. This discovery opens up a new class of materials for scientists working on 'skyrmionics', which aims to build memory and logic devices based on skyrmions.
The field of skyrmionics has developed rapidly over the last few years. The very small (around 10 nanometre) magnetic vortices could provide a new way to build memory and logical devices with a very low energy use. 'In fact, a computer memory system based on magnetic bubbles, which are basically very large skyrmions, was invented in the 1967 at Bell Labs', explains Maxim Mostovoy, Associate Professor of Theoretical Physics at the University of Groningen. This bubble memory was rapidly overtaken in the 1980s by much smaller silicon-based memory and is now only used for niche applications - it is very robust, has no moving parts and can operate in harsh environments.
Frustrated Magnet
So far, skyrmions are only produced in special materials called chiral magnets. The lattice structure of these magnets is chiral, which means the crystal lattice does not have the same properties as its mirror image. 'To advance the field, new classes of materials are needed', says Mostovoy. With his post-doc Andrey Leonov (currently working at the Technische Universität Dresden), he discovered that magnetic frustration can produce skyrmions.
In a normal magnet, the magnetic moments are aligned. In a frustrated magnet, interactions favouring parallel magnetic moments compete with interactions favouring antiparallel magnetic moments. Mostovoy: 'This means the magnetic moments in the crystals are not happy - they are forced to coil into magnetic spirals.' An applied magnetic field transforms the spiral into a magnetic crystal composed of skyrmions.
Energy efficient
'What is more, we found that skyrmions in frustrated magnets have more interesting physical properties than skyrmions in chiral magnets', says Mostovoy. 'For instance, magnetic moments inside the "frustrated" skyrmions can rotate, whereas in chiral magnets they are rigid'. The rotation is coupled to the electric dipole moment of the skyrmion, which can be used to store extra information. In chiral magnets information is encoded in skyrmion positions: 1, if a skyrmion is present, and 0, if it is absent. In frustrated magnets 1/0 can correspond to the up/down directions of the electric dipole moment. This latter type of storage is more energy efficient.
Also, whereas skyrmions in chiral magnets can be moved through the material using an electric current, in frustrated magnets they can be moved using an electrical field. 'This requires no current, which means a lower energy use and less heat production for potential applications'.
The discovery of skyrmions in frustrated magnets so far relies on theory. The existence and properties of the new skyrmions are described by Leonov and Mostovoy using modelling studies. 'We are hoping experimental physicists will confirm our findings soon.' The challenge will be to find a material which shows skyrmions at room temperature, as required for practical applications. This has already been achieved for chiral magnets, and Mostovoy is hoping that this can be repeated in the frustrated magnets. 'It is a very interesting class of materials; in our paper we also predict some other interesting topological states in these frustrated magnets'.
Suggested Items
Ventec International Group Enters into a Fulfillment and Supply Agreement with Matrix and Launches Ventec Americas
06/09/2025 | Ventec International GroupVentec is excited to announce a new partnership with Matrix aimed at enhancing the fulfillment, value-added conversion, and distribution of PCB base materials across the North American market. This collaboration is set to significantly improve supply chain efficiency, and delivery performance for the company's North American customers.
WellPCB, OurPCB Launch Low-Cost PCB Assembly and Custom Cable Assembly Solutions
05/29/2025 | ACCESSWIREWellPCB and OurPCB, world leading PCB manufacturing service providers, announced today that they have officially launched new Low-Cost PCB Assembly Solutions and Custom Cable Assembly services to meet the needs of the electronics manufacturing industry for high cost performance and flexible customization.
IPC Applauds Leadership of Reps. Moore and Krishnamoorthi on PCB Manufacturing Bill
05/28/2025 | IPCIPC, the global electronics association serving more than 1,400 U.S. companies and over 3,200 worldwide, strongly supports the bipartisan reintroduction on May 28 of the Protecting Circuit Boards and Substrates (PCBS) Act in the 119th Congress.
FastlinkPCB Accelerates Global Expansion, Builds Efficient PCB Industry Chain
05/26/2025 | FastlinkPCBFastlinkPCB, a PCB manufacturing and assembly solutions provider, announced that it has completed the layout of subsidiaries in the US, Germany, Switzerland, and Malaysia over the past year, forming a localized service network covering North America, Europe, and Southeast Asia.
LITEON Technology Reports Consolidated April Sales of NT$13.4 Billion Up 27% YoY
05/09/2025 | LITEON TechnologyLITEON Technology reported its April consolidated revenue of NT$13.4 billion. Thanks to the growth from power management in cloud computing, advanced server, and networking, the revenue is up 27% YoY.