Electric Field Control of Magnetic Moment in Palladium
October 1, 2015 | University of TokyoEstimated reading time: 2 minutes

Researchers at the University of Tokyo and Central Research Institute of Electric Power Industry have successfully induced a magnetic moment in palladium (Pd), usually a non-magnetic material, and demonstrated the ability to reversibly control the strength of the magnet by applying an electric field. This research has demonstrated the possibility of electrically inducing magnetism in non-magnetic materials.
If the properties of a material could be electrically tuned after production, it would be possible to easily obtain the desired functions when needed, further increasing the range of materials that could be used in magnetic devices. In fields that employ magnetic materials, tuning of magnetic force and control of magnetization direction (together, these properties are termed the “magnetic moment”) has been demonstrated by applying a voltage to a capacitor containing a magnetic film as one electrode and charging and discharging charge carriers (electrons) from the electrode. It is expected that this method will dramatically reduce power consumption compared to conventional means of controlling magnetic moment (heating, magnetic field or electric current application).
Prior studies have reported that it is possible to erase the magnetic properties of a material by the application of an electric field. However, there are no reports of successfully inducing and cancelling magnetic properties in a non-magnetic material by the same method.
The research group of Associate Professor Daichi Chiba at the University of Tokyo Graduate School of Engineering and the Central Research Institute of Electric Power Industry has shown that the strength of a magnetic moment induced in palladium, a metal which is usually non-magnetic, is electrically controllable, and that application of a positive voltage induces a stronger magnetic moment than a negative voltage. The research group fabricated an ultra-thin cobalt/palladium structure in which a ferromagnetically ordered magnetic moment was induced in the top palladium layer by the ferromagnetic proximity effect. The magnetic moment in this Pd layer was reversibly controlled by applying a voltage.
“This offers a new avenue for making non-magnetic materials ferromagnetic,” says Associate Professor Chiba of this latest research. He continues, “If it becomes possible to easily and reversibly induce magnetic properties in a non-magnetic material by applying an electric voltage, we may be able to make use of many materials currently not used in the field of magnetic engineering and further increase the range of materials available for use in magnetic devices.”
This research was carried out in collaboration with Senior Research Scientist Shinpei Ono at the Central Research Institute of Electric Power Industry Materials Science Institute.
Suggested Items
Symposium Review: Qnity, DuPont, and Insulectro Forge Ahead with Advanced Materials
07/02/2025 | Barb Hockaday, I-Connect007In a dynamic and informative Innovation Symposium hosted live and on Zoom on June 25, 2025, representatives from Qnity (formerly DuPont Electronics), DuPont, and Insulectro discussed the evolving landscape of flexible circuit materials. From strategic corporate changes to cutting-edge polymer films, the session offered deep insight into design challenges, reliability, and next-gen solutions shaping the electronics industry.
Indium Corporation Expert to Present on Automotive and Industrial Solder Bonding Solutions at Global Electronics Association Workshop
06/26/2025 | IndiumIndium Corporation Principal Engineer, Advanced Materials, Andy Mackie, Ph.D., MSc, will deliver a technical presentation on innovative solder bonding solutions for automotive and industrial applications at the Global Electronics A
Gorilla Circuits Elevates PCB Precision with Schmoll’s Optiflex II Alignment System
06/23/2025 | Schmoll MaschinenGorilla Circuits, a leading PCB manufacturer based in Silicon Valley, has enhanced its production capabilities with the addition of Schmoll Maschinen’s Optiflex II Post-Etch Punch system—bringing a new level of precision to multilayer board fabrication.
Day 1: Cutting Edge Insights at the EIPC Summer Conference
06/17/2025 | Pete Starkey, I-Connect007The European Institute for the PCB Community (EIPC) Summer Conference took place this year in Edinburgh, Scotland, June 3-4. This is the second of three articles on the conference. The other two cover the keynote speeches and Day 2 of the technical conference. Below is a recap of the first day’s sessions.
American Made Advocacy: Supporting the Entire PCB Ecosystem—Materials to OEMs
06/17/2025 | Shane Whiteside -- Column: American Made AdvocacyWith the addition of RTX to PCBAA’s membership roster, we now represent the interests of companies in the entire PCB ecosystem. From material providers to OEMs, the insights of our collective members help us educate, advocate, and support legislation and policy favorable to America’s microelectronics manufacturers. The industry veterans who lead these companies provide valuable perspective, and their accumulated wisdom makes us an even stronger association.