Printable Electronics to Benefit from Contactless Liquid Deposition
October 2, 2015 | University of TwenteEstimated reading time: 1 minute

Scientists of research institute MESA+ of Twente University have developed a technology for contactless deposition of liquids at nanoscale. In doing so, they make use of an electric field. Their technology will lead to new 3D-applications and can be of great value to, for example, cell research, nano-lithography and printable electronics. The findings of the Twente-based Mesoscale Chemical Systems Department have recently been published in the academic journal Applied Physics Letters.
In conventional techniques for liquid deposition, pressure is exerted on liquids, or capillary forces are used. This is done with the aid of a so-called AFM (Atomic Force Microscopy) ‘dip-pen’ probe or a ‘nano-fountain pen’ probe. These probes have been equipped with a tip which permeates the liquid. A disadvantage of this method is that several elements, such as humidity and liquid or surface properties, can affect the deposition negatively.
The contactless deposition method with the AFM nano-fountain pen probe ensures a reliable and quick deposition of liquids on a 50 nanometre scale. This is thanks to the use of an electric field. By applying a voltage, the liquids inside the tip are charged. The difference with the charge of the surface causes the liquid to be pulled out of the probe. A relatively low voltage (60 Volt) can already be sufficient. As the pulse duration increases, the volume of the liquid deposition will grow too.
The research now published was carried out in collaboration with the company SmartTip. This spin-off of the University of Twente develops and produces smart probes with new functionalities. Researcher Joël Geerlings of the Mesoscale Chemical Systems Department expects that many new possible 3D-applications lie ahead with the development of the new deposition method. “Think of a 3D-printer with nanoscale resolution that produces a scaffold (construction) for cell research.” Other applications are arrays of DNA or proteins, photonic crystals, microfluidic structures, printed electronics and MEMS structures (micro-electromechanical systems) for sensors, for example.”
Joël Geerlings will obtain his doctoral degree in January, based on his research into contactless liquid deposition. Mesoscale Chemical Systems is part of the faculty of Science and Technology and it works closely together with research groups of research institute MESA+ of the University of Twente.
Suggested Items
OSI Systems Receives $34 Million Contract for Cargo and Vehicle Inspection Systems
07/11/2025 | BUSINESS WIREOSI Systems, Inc. announced that its Security division has been awarded a contract worth approximately $34 million by an international customer.
OSI Systems Lands $17 Million Order for Cargo and Vehicle Inspection Systems
07/07/2025 | BUSINESS WIREOSI Systems, Inc. announced that its Security division received an order valued at approximately $17 million from an international customer for cargo and vehicle inspection systems.
KYOCERA AVX Releases New 3DB Hybrid Couplers
07/04/2025 | PRNewswireKYOCERA AVX, a leading global manufacturer of advanced electronic components engineered to accelerate technological innovation and build a better future, released a new line of integrated thin film (ITF) hybrid couplers designed to facilitate the continued evolution of high-frequency wireless systems in industrial, automotive, telecommunications, and telemetry applications.
Driving Innovation: Direct Imaging vs. Conventional Exposure
07/01/2025 | Simon Khesin -- Column: Driving InnovationMy first camera used Kodak film. I even experimented with developing photos in the bathroom, though I usually dropped the film off at a Kodak center and received the prints two weeks later, only to discover that some images were out of focus or poorly framed. Today, every smartphone contains a high-quality camera capable of producing stunning images instantly.
IBM, RIKEN Unveil First IBM Quantum System Two Outside of the U.S.
06/24/2025 | IBMIBM and RIKEN, a national research laboratory in Japan, today unveiled the first IBM Quantum System Two ever to be deployed outside of the United States and beyond an IBM Quantum Data Center.