Nanoscale Photodetector Shows Promise to Improve the Capacity of Photonic Circuits
October 6, 2015 | The Optical SocietyEstimated reading time: 2 minutes
Photonic circuits, which use light to transmit signals, are markedly faster than electronic circuits. Unfortunately, they're also bigger. It's difficult to localize visible light below its diffraction limit, about 200-300 nanometers, and as components in electronic semiconductors have shrunk to the nanometer scale, the photonic circuit size limitation has given electronic circuits a significant advantage, despite the speed discrepancy.
Now researchers at the University of Rochester have demonstrated a key achievement in shrinking photonic devices below the diffraction limit -- a necessary step on the road to making photonic circuits competitive with today's technology. The scientists developed a nanoscale photodetector that uses the common material molybdenum disulfide to detect optical plasmons -- travelling oscillations of electrons below the diffraction limit -- and successfully demonstrated that light can drive a current using a silver nanowire.
"Our devices are a step towards miniaturization below the diffraction limit," said Kenneth Goodfellow, a graduate student in the laboratory of the Quantum Optoelectronics and Optical Metrology Group, The Institute of Optics, University of Rochester, New York. "It is a step towards using light to drive, or, at least complement electronic circuitry for faster information transfer."
The team will present their work at the Frontiers in Optics, The Optical Society's annual meeting and conference in San Jose, California, USA, on 22 October 2015.
The device expands on previous work demonstrating that light could be transmitted along a silver nanowire as a plasmon and re-emitted at the other end, which was covered with atomically-thin flakes of molybdenum disulfide (MoS2). When re-emitted, the light corresponded to the band gap of MoS2, rather than solely to the laser's wavelength, demonstrating that the plasmons effectively nudged the electrons in MoS2 into a different energy state.
"The natural next idea would be to see if this type of device would be able to be used as a photodetector," Goodfellow said.
To do this, the group transferred a silver nanowire coated at one end with MoS2 onto a silicon substrate and deposited metal contacts onto that same end with electron beam lithography. They then connected the device to equipment to control its bias, or fixed, voltage and to measure the current running through it.
When the uncovered end of the wire was exposed to a laser, the energy was converted into plasmons, a form of electromagnetic wave that travels through oscillations in electron density. This energy electronically excited an electron once it reached the molybdenum disulfide-covered end, effectively generating a current.
By scanning the wire bit-by-bit with a laser -- a process known as raster scanning -- the researchers were able to measure current at each point along the wire, finding that it was sensitive to the polarization of the incoming light and was at its strongest when the light was polarized parallel to the wire. They also found that the device was sensitive to the laser's excitation wavelength, and performance was limited at shorter wavelengths due to ineffective plasmon propagation and at longer wavelengths due to the band gap of molybdenum disulfide.
"Full photonic circuits are some time in the future, but this work helps to feed the current effort," Goodfellow said.
Future work for the group includes reducing potential contamination in device assembly by transitioning to a complete dry transfer of wires and MoS2 onto prefabricated electrodes, as well as gaining better control of the MoS2 doping process to add additional charge carriers and improve the device's efficiency.
Suggested Items
Green Circuits Expands Large-Format PCBA Capabilities with Installation of JUKI Primo Screen Printer
05/05/2025 | Green CircuitsGreen Circuits, a full-service Electronics Manufacturing Services (EMS) partner to leading OEMs, proudly announces the installation of the JUKI Primo Large-Format Screen Printer, expanding its capabilities to support printed circuit board assemblies (PCBAs) up to 33.5" x 24".
Hon Hai Research Institute Demonstrates Superiority of Shallow Quantum Circuits Beyond Prior Understanding
05/05/2025 | Hon Hai Technology GroupHon Hai Research Institute (HHRI), in a milestone collaborative effort, has demonstrated that parallel quantum computation can exhibit greater computational power than previously recognized, with its research results accepted for publication in the prestigious journal Nature Communications.
Alternative Manufacturing Inc. (AMI) Appoints Gregory Picard New Business Development Manager
05/01/2025 | Alternative Manufacturing, Inc.Alternative Manufacturing Inc. (AMI) is pleased to announce the appointment of Mr. Gregory Picard as our new Business Development Manager. Picard brings a wealth of experience in Sales and Business Development, having worked with some of the most prominent names in the industry.
Elephantech, Logitech Together Drive Disruptive Electronics Innovation
05/01/2025 | ElephantechElephantech Inc. announced a groundbreaking collaboration with Logitech International to revolutionize peripherals manufacturing and the printed circuit board (PCB) industry.
A Visit With ‘Flexperts’ Mark Finstad and Nick Koop
05/01/2025 | Joe Fjelstad, Verdant ElectronicsAt IPC APEX EXPO 2025, I chatted with seasoned flex experts Mark Finstad and Nick Koop about "Flexperts" and their roles as leading educators and in the realm of standards development for this increasingly indispensable electronic interconnection technology. They have been teaching about lessons learned and how to successfully navigate the “seas” of flexible circuits to help their students avoid the hazards that have taken down many of their predecessors in the past.