New Flexible Robots Could Assist with Surgeries
October 16, 2015 | UC San DiegoEstimated reading time: 2 minutes
A future in which robots can maneuver with high agility, dexterity and precision is not too far away. These flexible robots could one day assist with surgeries, navigate through tight, complex environments with ease, and be used to develop prosthetics that are capable of natural movement.
The design and intelligent control of flexible and surgical robotics are the specialties of Michael Yip, one of the new faculty joining the Jacobs School of Engineering at the University of California, San Diego. Yip received his Ph.D from the Department of Bioengineering at Stanford University. He will arrive in November as an assistant professor in the Department of Electrical and Computer Engineering at UC San Diego and will direct the new Advanced Robotics and Controls Laboratory (ARCLab). His research involves developing advanced algorithms that can control flexible robotics to move with high agility and dexterity. He also designs novel robotic systems that mimic the natural motion of animal and human bodies.
“Intelligent control of flexible robotics is a challenge that’s been plaguing the field. To make flexible robotics work effectively in places like the human body, we need to figure out how to control the robotics to crawl through constrained spaces and do manipulations without causing damage to their surroundings or to themselves,” said Yip.
This type of control is important in applications like robot-assisted surgery. For example, a surgeon could control a long, thin, flexible robotic device to snake its way through a patient’s body and perform surgery with high precision and safety. Use of these robotic devices could also offer less invasive surgical procedures.
“Rather than dissecting the patient’s body, a surgeon could just make one or two small incisions on the body to insert these surgical robotic devices,” said Yip.
Controlling flexible robotics to maneuver through tight spaces — in a minimally invasive manner — is also useful in industrial applications including manufacturing, inspection and assembly. For example, flexible robotics could be used to inspect the wiring in an airplane wing or do repairs deep within a car engine without having to disassemble any major machinery.
Yip also works on making artificial muscles and actuators that can mimic biological muscle performance. Previously, he worked as a Walt Disney Imagineer within the Disney Research division, where he developed a technology for creating low-cost artificial muscles using conductive sewing thread. These synthetic muscles could contract and expand just like human muscles and were used to make life-like animatronic hands and arms. The artificial muscles were featured this summer in Popular Mechanics and Gizmodo.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Printed Electronics Market Size to Top $83.77 Billion by 2034 Driven by IoT Adoption and Flexible Device Demand
09/11/2025 | Globe NewswireThe printed electronics market size has been calculated at U$19,920 million in 2025 and is expected to grow from $23,58 million in 2026 to approximately $83,770 million by 2034.
Fresh PCB Concepts: Designing for Success at the Rigid-flex Transition Area
08/28/2025 | Team NCAB -- Column: Fresh PCB ConceptsRigid-flex PCBs come in all shapes and sizes. Manufacturers typically use fire-retardant, grade 4 (FR-4) materials in the rigid section and flexible polyimide materials in the flex region. Because of the small size, some rigid-flex PCBs, like those for hearing aid devices, are among the most challenging to manufacture. However, regardless of its size, we should not neglect the transition area between the rigid and flexible material.
Global Flexible PCB Output Expected to Surpass $20 Billion by 2025, with AI Glasses Emerging as a New Growth Driver
08/25/2025 | TPCAThe Taiwan Printed Circuit Association (TPCA) and the Industrial Technology Research Institute (ITRI) released the "2025 Global Flexible PCB Industry Outlook" in August.
Nano Silver Inks Market Forecast Report 2025-2030
08/20/2025 | Globe NewswireThe Nano Silver Inks Market is expected to grow from USD 427.415 million in 2025 to USD 836.160 million in 2030, at a CAGR of 14.36%.
Flexible Circuit Technologies to Host Free Flex Heater Webinar
08/18/2025 | Flexible Circuit TechnologiesGlobal Supplier of flexible circuits, flex design services, and assembly/box-build services, Flexible Circuit Technology will host their latest webinar, "Thermal Precision Meets Flexibility: The Technology Behind Heater Circuits" on Tuesday, August 26th, 2025 at 11 AM EDT.