Nanowire Material May Help Improve Brain Implants
October 19, 2015 | CORDISEstimated reading time: 1 minute
A team of researchers at Lund University in Sweden has developed a new type of nanowire material which may help to improve brain implants. Meanwhile another team from Lund has made a breakthrough for electrode implants in the brain.
There are certain persistent problems associated with today’s brain implants which have made them less effective than they could be. One problem is that the body interprets the implants as foreign objects, resulting in an encapsulation of the electrode, which in turn leads to loss of signal.
A nanowire structure developed by a team at Lund University attempts to address this issue. The new substrate, in which neurons can grow and thrive, is made from the semiconductor material gallium phosphide where each outgrowing nanowire has a diameter of only 80 nanometres (billionths of a metre).
‘Our nanowire structure prevents the cells that usually encapsulate the electrodes – glial cells – from doing so’, says Christelle Prinz, researcher in Nanophysics at Lund University, who developed this technique together with Maria Thereza Perez, a researcher in Ophthalmology.
Prinz continues, ‘I was very pleasantly surprised by these results. In previous in-vitro experiments, the glial cells usually attach strongly to the electrodes.’
The team avoided the encapsulation problem by developing a small substrate where regions of super thin nanowires are combined with flat regions. While neurons grow and extend processes on the nanowires, the glial cells primarily occupy the flat regions in between. ‘The different types of cells continue to interact,’ Prinz adds. ‘This is necessary for the neurons to survive because the glial cells provide them with important molecules.’ So far, tests have only been done with cultured cells (in vitro) but the researchers hope that they will soon be able to continue with experiments in vivo.
Meanwhile, another research team at Lund University also reported a potential breakthrough for brain research just last week. This team, led by Professor Jens Schouenborg and Dr Lina Pettersson, has developed implantable electrodes that can capture signals from single neurons in the brain over a long period of time - without causing brain tissue damage.
Medicalxpress.com reports that this technology would make it possible to understand brain function in both healthy and diseased individuals. According to Professor Schouenborg, the research may lead to more effective treatments for diseases such as Parkinson's disease and chronic pain conditions.
Suggested Items
Rules of Thumb: Design007 Magazine, November 2024
11/11/2024 | I-Connect007 Editorial TeamRules of thumb are everywhere, but there may be hundreds of rules of thumb for PCB design. They’re built on design formulas, fabricators’ limitations, and tribal knowledge. And unfortunately, some longtime rules of thumb should be avoided at all costs. How do we separate the wheat from the chaff, so to speak?
Connect the Dots: Best Practices for Prototyping
09/21/2023 | Matt Stevenson -- Column: Connect the DotsPCB prototyping is a critical juncture during an electronic device’s journey from concept to reality. Regardless of a project’s complexity, the process of transforming a design into a working board is often enlightening in terms of how a design can be improved before a PCB is ready for full production.
The Drive Toward UHDI and Substrates
09/20/2023 | I-Connect007 Editorial TeamPanasonic’s Darren Hitchcock spoke with the I-Connect007 Editorial Team on the complexities of moving toward ultra HDI manufacturing. As we learn in this conversation, the number of shifting constraints relative to traditional PCB fabrication is quite large and can sometimes conflict with each other.
Asia/Pacific AI Spending Surge to Reach a Projected $78 Billion by 2027
09/19/2023 | IDCAsia/Pacific spending on Artificial Intelligence (AI) ), including software, services, and hardware for AI-centric systems will grow to $78.4 billion in 2027, according to International Data Corporation's latest Worldwide Artificial Intelligence Spending Guide.
Intel to Sell Minority Stake in IMS Nanofabrication Business to TSMC
09/13/2023 | IntelIntel Corporation announced that it has agreed to sell an approximately 10% stake in the IMS Nanofabrication business to TSMC. TSMC’s investment values IMS at approximately $4.3 billion, consistent with the valuation of the recent stake sale to Bain Capital Special Situations.