Graphene Nano-coils are Natural Electromagnets
October 20, 2015 | Rice UniversityEstimated reading time: 6 minutes
In the drive to miniaturize electronics, solenoids have become way too big, say Rice University scientists who discovered the essential component can be scaled down to nano-size with macro-scale performance.
The secret is in a spiral form of atom-thin graphene that, remarkably, can be found in nature, according to Rice theoretical physicist Boris Yakobson and his colleagues.
“Usually, we determine the characteristics for materials we think might be possible to make, but this time we’re looking at a configuration that already exists,” Yakobson said. “These spirals, or screw dislocations, form naturally in graphite during its growth, even in common coal.”
A nano-coil made of graphene could be an effective solenoid inductor for electronic applications, according to researchers at Rice University. Courtesy of the Yakobson Research Group
The researchers determined that when a voltage is applied, current will flow around the helical path and produce a magnetic field, as it does in macro inductor-solenoids. The discovery is detailed in a new paper in the American Chemical Society journal Nano Letters.
“One can compare the structure to a high-rise parking lot for electrons — but without parking spaces, so the electrons just drive through,” Yakobson said. “Or you can say it resembles Archimedes’ screw – which rotates in order to pump water uphill — but filled with electricity instead.
“Perhaps this might work in reverse here: An electron current, pumped through by the applied voltage, at certain conditions may just cause the graphene spiral to spin, like a fast little electro-turbine,” he said.
Solenoids are wires coiled around a metallic core. They produce a magnetic field when carrying current, turning them into electromagnets. These are widespread in electronic and mechanical devices, from circuit boards to transformers to cars. They also serve as inductors, primary components in electric circuits that regulate current, and in their smallest form are part of integrated circuits. (The lump in power cables that feed electronic devices contains inductors.)
While transistors get steadily smaller, basic inductors in electronics have become relatively bulky, said Fangbo Xu, a Rice alumnus and lead author of the paper. “It’s the same inside the circuits,” he said. “Commercial spiral inductors on silicon occupy excessive area. If realized, graphene nano-solenoids could change that.”
The nano-solenoids analyzed through computer models at Rice should be capable of producing powerful magnetic fields of about 1 tesla, about the same as the coils found in typical loudspeakers, according to Yakobson and his team. They found the magnetic field would be strongest in the hollow, nanometer-wide cavity at the spiral’s center.
The spiral form is attributable to a simple topological trick, he said. Graphene is made of hexagonal arrays of carbon atoms. Malformed hexagons known as dislocations along one edge force the graphene to twist around itself, akin to a continuous nanoribbon that mimics a mathematical construct known as a Riemann surface.
The researchers demonstrated theoretically how energy would flow through the hexagons in nano-solenoids with edges in either armchair or zigzag formations. In one case, they determined the performance of a conventional spiral inductor of 205 microns in diameter could be matched by a nano-solenoid 70 nanometers wide – nearly 10,000,000 times smaller.
Because graphene has no energy band gap (which gives a material semiconducting properties), electricity should move through without any barriers. But in fact, the width of the spiral and the configuration of the edges – either armchair or zigzag – influences how the current is distributed, and thus its inductive properties.
The researchers suggested it should be possible to isolate graphene screw dislocations from crystals of graphitic carbon (graphene in bulk form), but enticing graphene sheets to grow in a spiral would allow for better control of its properties, Yakobson said.
Xu suggested nano-solenoids may also be useful as molecular relays or switchable traps for magnetic molecules or radicals in chemical probes.
Co-authors are Rice graduate student Henry Yu and alumnus Arta Sadrzadeh. Yakobson is the Karl F. Hasselmann Professor of Materials Science and NanoEngineering and a professor of chemistry.
The research was supported by the Office of Naval Research’s Multidisciplinary University Research Initiative (MURI), the National Science Foundation and the Air Force Office of Scientific Research MURI.
In the drive to miniaturize electronics, solenoids have become way too big, say Rice University scientists who discovered the essential component can be scaled down to nano-size with macro-scale performance.The secret is in a spiral form of atom-thin graphene that, remarkably, can be found in nature, according to Rice theoretical physicist Boris Yakobson and his colleagues.
“Usually, we determine the characteristics for materials we think might be possible to make, but this time we’re looking at a configuration that already exists,” Yakobson said. “These spirals, or screw dislocations, form naturally in graphite during its growth, even in common coal.”
A nano-coil made of graphene could be an effective solenoid inductor for electronic applications, according to researchers at Rice University. Courtesy of the Yakobson Research Group
The researchers determined that when a voltage is applied, current will flow around the helical path and produce a magnetic field, as it does in macro inductor-solenoids. The discovery is detailed in a new paper in the American Chemical Society journal Nano Letters.
“One can compare the structure to a high-rise parking lot for electrons — but without parking spaces, so the electrons just drive through,” Yakobson said. “Or you can say it resembles Archimedes’ screw – which rotates in order to pump water uphill — but filled with electricity instead.
“Perhaps this might work in reverse here: An electron current, pumped through by the applied voltage, at certain conditions may just cause the graphene spiral to spin, like a fast little electro-turbine,” he said.
Solenoids are wires coiled around a metallic core. They produce a magnetic field when carrying current, turning them into electromagnets. These are widespread in electronic and mechanical devices, from circuit boards to transformers to cars. They also serve as inductors, primary components in electric circuits that regulate current, and in their smallest form are part of integrated circuits. (The lump in power cables that feed electronic devices contains inductors.)
While transistors get steadily smaller, basic inductors in electronics have become relatively bulky, said Fangbo Xu, a Rice alumnus and lead author of the paper. “It’s the same inside the circuits,” he said. “Commercial spiral inductors on silicon occupy excessive area. If realized, graphene nano-solenoids could change that.”
The nano-solenoids analyzed through computer models at Rice should be capable of producing powerful magnetic fields of about 1 tesla, about the same as the coils found in typical loudspeakers, according to Yakobson and his team. They found the magnetic field would be strongest in the hollow, nanometer-wide cavity at the spiral’s center.
The spiral form is attributable to a simple topological trick, he said. Graphene is made of hexagonal arrays of carbon atoms. Malformed hexagons known as dislocations along one edge force the graphene to twist around itself, akin to a continuous nanoribbon that mimics a mathematical construct known as a Riemann surface.
The researchers demonstrated theoretically how energy would flow through the hexagons in nano-solenoids with edges in either armchair or zigzag formations. In one case, they determined the performance of a conventional spiral inductor of 205 microns in diameter could be matched by a nano-solenoid 70 nanometers wide – nearly 10,000,000 times smaller.
Because graphene has no energy band gap (which gives a material semiconducting properties), electricity should move through without any barriers. But in fact, the width of the spiral and the configuration of the edges – either armchair or zigzag – influences how the current is distributed, and thus its inductive properties.
The researchers suggested it should be possible to isolate graphene screw dislocations from crystals of graphitic carbon (graphene in bulk form), but enticing graphene sheets to grow in a spiral would allow for better control of its properties, Yakobson said.
Xu suggested nano-solenoids may also be useful as molecular relays or switchable traps for magnetic molecules or radicals in chemical probes.
Co-authors are Rice graduate student Henry Yu and alumnus Arta Sadrzadeh. Yakobson is the Karl F. Hasselmann Professor of Materials Science and NanoEngineering and a professor of chemistry.
The research was supported by the Office of Naval Research’s Multidisciplinary University Research Initiative (MURI), the National Science Foundation and the Air Force Office of Scientific Research MURI.
Suggested Items
Manncorp Launches Industry-First 'Build Your Own SMT Line' Tool
05/02/2025 | ManncorpManncorp, a leading supplier of SMT (Surface Mount Technology) equipment, proudly announces the official launch of its “Build Your Own SMT Line” tool – a first-of-its-kind resource in the electronics manufacturing industry. Introduced just one month ago, this revolutionary online feature gives manufacturers the unprecedented ability to design a complete SMT production line tailored to their exact needs – all from their desktop.
It’s Only Common Sense: Selling to Engineers
04/28/2025 | Dan Beaulieu -- Column: It's Only Common SenseSelling to engineers is an art and a science. It requires a tailored approach that respects their mindset and professional priorities, provides data, demonstrates expertise, and solves problems. Here’s how to master the art of selling to engineers.
Designing Through the Noise: April 2025 Design007 Magazine
04/08/2025 | I-Connect007 Editorial TeamIn the April 2025 issue of Design007 Magazine, our experts discuss the constantly evolving world of RF design, including the many tradeoffs, material considerations, and design tips and techniques that designers and design engineers need to know to succeed in this high-frequency realm.
Hitachi Announces Completion of New Production Facility for Semiconductor Manufacturing Equipment
04/01/2025 | JCN NewswireHitachi High-Tech Corporation announced that the new production facility for semiconductormanufacturing equipment (etch systems), which had been under construction since December 2023 in the Kasado area (Kudamatsu City, Yamaguchi Prefecture), was completed and started the operation on March 17, 2025.
Do You Have X-ray Vision? SMT007 Magazine April Issue Is No Joke
04/01/2025 | I-Connect007 Editorial TeamAs component packaging continues to evolve, the capability of inspecting through components is crucial. Has X-ray’s time finally come in electronics manufacturing? Join us in this issue of SMT007 Magazine, where we answer this question—and others—to bring more efficiency to your bottom line.