'Zeno Effect' Verified: Atoms Won't Move while you Watch
October 28, 2015 | Cornell UniversityEstimated reading time: 3 minutes
One of the oddest predictions of quantum theory – that a system can’t change while you’re watching it – has been confirmed in an experiment by Cornell physicists. Their work opens the door to a fundamentally new method to control and manipulate the quantum states of atoms and could lead to new kinds of sensors.
The experiments were performed in the Utracold Lab of Mukund Vengalattore, assistant professor of physics, who has established Cornell’s first program to study the physics of materials cooled to temperatures as low as .000000001 degree above absolute zero. The work is described in the Oct. 2 issue of the journal Physical Review Letters
Graduate students Yogesh Patil and Srivatsan Chakram created and cooled a gas of about a billion Rubidium atoms inside a vacuum chamber and suspended the mass between laser beams. In that state the atoms arrange in an orderly lattice just as they would in a crystalline solid. But at such low temperatures the atoms can “tunnel” from place to place in the lattice. The famous Heisenberg uncertainty principle says that position and velocity of a particle are related and cannot be simultaneously measured precisely. Temperature is a measure of a particle’s motion. Under extreme cold velocity is almost zero, so there is a lot of flexibility in position; when you observe them, atoms are as likely to be in one place in the lattice as another.
The researchers demonstrated that they were able to suppress quantum tunneling merely by observing the atoms. This so-called “Quantum Zeno effect,” named for a Greek philosopher, derives from a proposal in 1977 by E.C. George Sudarshan and Baidyanath Misra at the University of Texas, Austin, who pointed out that the weird nature of quantum measurements allows, in principle, for a quantum system to be “frozen” by repeated measurements.
Previous experiments have demonstrated the Zeno effect with the “spins” of subatomic particles. “This is the first observation of the Quantum Zeno effect by real space measurement of atomic motion,” Vengalattore said. “Also, due to the high degree of control we’ve been able to demonstrate in our experiments, we can gradually ‘tune’ the manner in which we observe these atoms. Using this tuning, we’ve also been able to demonstrate an effect called ‘emergent classicality’ in this quantum system.” Quantum effects fade, and atoms begin to behave as expected under classical physics.
The researchers observed the atoms under a microscope by illuminating them with a separate imaging laser. A light microscope can’t see individual atoms, but the imaging laser causes them to fluoresce, and the microscope captured the flashes of light. When the imaging laser was off, or turned on only dimly, the atoms tunneled freely. But as the imaging beam was made brighter and measurements made more frequently, the tunneling reduced dramatically.
“This gives us an unprecedented tool to control a quantum system, perhaps even atom by atom,” said Patil, lead author of the paper. Atoms in this state are extremely sensitive to outside forces, he noted, so this work could lead to the development of new kinds of sensors.
The experiments were made possible by the group’s invention of a novel imaging technique that made it possible to observe ultracold atoms while leaving them in the same quantum state. “It took a lot of dedication from these students and it has been amazing to see these experiments be so successful,” Vengalattore said. “We now have the unique ability to control quantum dynamics purely by observation.”
The popular press has drawn a parallel with the “weeping angels” depicted in the “Dr. Who” television series – alien creatures who look like statues and can’t move as long as you’re looking at them. There may be some sense to that. In the quantum world, the folk wisdom really is true: “A watched pot never boils.”
The research was supported by the Army Research Office, the Defense Advanced Research Projects Agency under its QuASAR program and the National Science Foundation.
Recent Ph.D. graduate Chakram is now at the University of Chicago.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Redwire Announces Contract to Deliver Stalker Uncrewed Aerial Systems to Another European NATO Ally
09/18/2025 | BUSINESS WIRERedwire Corporation, a global leader in space and defense technology solutions, announced that its wholly owned subsidiary, Edge Autonomy, has been awarded a contract from an undisclosed European NATO country to deliver its Edge Autonomy Stalker Group 2 fixed wing uncrewed aerial system (UAS) to perform long-range reconnaissance and intelligence gathering.
India’s Aerospace and Defence Engineered for Power, Driven by Electronics
09/16/2025 | Gaurab Majumdar, Global Electronics AssociationWith a defence budget of $82.05 billion (2025–26) and a massive $223 billion earmarked for aerospace and defence spending over the next decade, India is rapidly positioning itself as a major player in the global defence and aerospace market.
I-Connect007 Launches Advanced Electronics Packaging Digest
09/15/2025 | I-Connect007I-Connect007 is pleased to announce the launch of Advanced Electronics Packaging Digest (AEPD), a new monthly digital newsletter dedicated to one of the most critical and rapidly evolving areas of electronics manufacturing: advanced packaging at the interconnect level.
VIDEOTON EAS's Bulgarian Subsidiary Expands Into Automotive Products
09/15/2025 | VideotonVEAS Bulgaria, engaged in electronics manufacturing, has joined the ranks of VIDEOTON companies authorized to produce automotive products.
Variosystems Strengthens North American Presence with Southlake Relaunch 2025
09/15/2025 | VariosystemsVariosystems celebrated the relaunch of its U.S. facility in Southlake, Texas. After months of redesign and reorganization, the opening marked more than just the return to a modernized production site—it was a moment to reconnect with our teams, partners, and the local community.