New Technology Colors in the Infrared Rainbow
November 10, 2015 | Duke UniversityEstimated reading time: 3 minutes
Researchers have devised a technology that can bring true color to infrared imaging systems, like the one used to track Arnold Schwarzenegger through the jungle in the movie "Predator."
Traditional infrared imaging systems may look colorful on screen, with warm objects appearing redder and whiter than their surroundings. But these images are not created from actual colors. They are based on the amount of thermal radiation -- or infrared light -- that the camera captures.
The ability to identify different wavelengths -- or colors -- of the infrared spectrum would capture much more information about the objects being imaged, such as their chemical composition.
In a new study, a team lead by Maiken H. Mikkelsen, the Nortel Networks Assistant Professor of Electrical & Computer Engineering and Physics at Duke University, demonstrates perfect absorbers for small bands of the electromagnetic spectrum from visible light through the near infrared. The fabrication technique is easily scalable, can be applied to any surface geometry and costs much less than current light absorption technologies.
Once adopted, the technique would allow advanced thermal imaging systems to not only be produced faster and cheaper than today's counterparts, but to have higher sensitivity. It could also be used in a wide variety of other applications, such as masking the heat signatures of objects.
The study was published online Nov. 9 in Advanced Materials.
"By borrowing well-known techniques from chemistry and employing them in new ways, we were able to obtain significantly better resolution than with a million-dollar state-of-the-art electron beam lithography system," said Mikkelsen. "This allowed us to create a coating that can fine-tune the absorption spectra with a level of control that hasn't been possible previously, with potential applications from light harvesting and photodetectors to military applications."
"This doesn't require top-down fabrication such as expensive lithography techniques and we don't make this in a clean room," added Gleb Akselrod, a postdoctoral researcher in Mikkelsen's laboratory. "We build it from the bottom up, so the whole thing is inherently cheap and very scalable to large areas."
The technology relies on a physics phenomenon called plasmonics. The researchers first coat a surface with a thin film of gold through a common process like evaporation. They then put down a few-nanometer-thin layer of polymer, followed by a coating of silver cubes, each one about 100 nanometers (billionths of a meter) in size.
When light strikes the new engineered surface, a specific color gets trapped on the surface of the nanocubes in packets of energy called plasmons, and eventually dissipates into heat. By controlling the thickness of the polymer film and the size and number of silver nanocubes, the coating can be tuned to absorb different wavelengths of light from the visible spectrum to the near infrared.
"What is so attractive about the film/nanocube system is its remarkable simplicity and flexibility," said David R. Smith, the James B. Duke Professor of Electrical and Computer Engineering at Duke. "The unique absorbing properties of the nanocubes can be predicted with straightforward formulas, making it easy to quickly determine recipes for surface coatings that provide desired spectral properties. The nanocube system eliminates, or at least vastly reduces, cost and manufacturing issues, so that we can focus on impacting exciting application areas such as photovoltaics or thermal coatings."
For an example of the latter, if you can control the colors of light that a material absorbs, then you can also control the wavelengths of light that it emits. By making the nanocubes larger to absorb wavelengths corresponding to thermal radiation, this technology could suppress or mask an object's natural thermal radiation, otherwise known as "black body radiation."
Coating photodetectors to absorb only specific wavelengths of infrared light would allow novel and cheap cameras to be made that could see different infrared colors.
"We haven't made the device that's actually going to take that energy and convert it to an electrical signal yet," said Akselrod. "That's going to be the next step."
Suggested Items
RTX's Collins Aerospace Enhances Capabilities to Speed Marine Corps Decision-making in Battle
04/22/2025 | RTXCollins Aerospace, an RTX business, successfully demonstrated new technology that helps the military gather and use information from a wider range of sources at Project Convergence Capstone 5, a large-scale military exercise.
Real Time with... IPC APEX EXPO 2025: GreenSource's Growth and Future Developments
04/15/2025 | Real Time with...IPC APEX EXPOThings are looking bright for GreenSource. Michael Gleason shares an update on GreenSource's recent growth and upcoming changes. A recipient of a Defense Production Act Investment Program award, GreenSource is planning for new substrate capabilities. Current investments continue to enhance equipment and sustainability initiatives such as water quality. And their unique collaboration with the University of New Hampshire continues to aid their workforce development, despite recruitment challenges.
Acquisition of MADES Strengthens Cicor's Pan-European Leadership in the Aerospace & Defense Sector
04/03/2025 | CicorCicor Group announces that it has signed an agreement to acquire 100% of the shares of Spanish electronics company Malaga Aerospace, Defense & Electronics Systems S.A.U. (MADES). The company focuses on electronic solutions for the aerospace and defense industry, which accounts for well over half of its business.
Real Time with... IPC APEX EXPO 2025: Discover Comprehensive PCB Solutions with American Standard Circuits
04/01/2025 | Real Time with...IPC APEX EXPOAnaya Vardya, CEO of American Standard Circuits, highlights the company's dedication to offering complete PCB solutions. The company provides free design packages and caters to various sectors, including military and telecommunications.
Teledyne FLIR Defense Captures $7.8 Million Contract to Provide Mobile Surveillance Systems for Key Military Entity in Saudi Arabia
03/24/2025 | BUSINESS WIRETeledyne FLIR Defense, part of Teledyne Technologies Incorporated (NYSE:TDY), has won a contract valued at $7.8 million with Middle East Task Company (METCO) to provide its next-generation LVSS (Lightweight Vehicle Surveillance System) to a high-profile military entity in Saudi Arabia. The agreement also includes mission support equipment and training. Quantities were not disclosed.