Miniaturizable Magnetic Resonance
November 13, 2015 | University of AlbertaEstimated reading time: 2 minutes
A garnet crystal only one micrometre in diameter was instrumental in a University of Alberta team of physicists creating a route to “lab-on-a-chip” technology for magnetic resonance, a tool to simplify advanced magnetic analysis for device development and interdisciplinary science.
“To most, a gem so tiny would be worthless, but to us, it’s priceless,” says Mark Freeman, University of Alberta physics professor and Canada Research Chair in condensed matter physics. “It was the perfect testbed for this new method.”
In the new method of measuring magnetic resonance, published in the November 13, 2015 issue of the journal Science, the signal is a mechanical twisting motion, detected with light. The new approach is more naturally suited to miniaturization than the current method, which creates an electrical signal by induction. In fact, the entire magnetic sensor unit created with the new technology can fit on a chip as small as one square centimetre.
“Our discovery makes the case that magnetic resonance is in essence both a mechanical and magnetic phenomenon on account of magnetic dipoles possessing angular momentum,” says Freeman, noting that the concept of magnetism makes more sense when you consider its mechanical properties. “Magnetism needs better spin doctors than it has had. Everything in the world is magnetic on some level, so the possibilities for scientific applications of this new technique are endless.”
The discovery opens up a world of possible miniaturized platforms for health care, technology, energy, environmental monitoring, and space exploration. Explains Freeman, “There are immediate applications in physics, Earth sciences, and engineering, but we have only looked at electron spin resonance. Proton spin resonance is the next big step that will open up applications in chemistry and biology.”
Mark Freeman (seated), with Fatemeh Fani Sani (middle row left), Joseph Losby (top right) and team members have discovered a route to lab-on-a-chip technology for magnetic resonance, a tool to simplify advanced magnetic analysis for device development and interdisciplinary science.
To foster the development of these applications, Freeman’s team plans to openly share the information about how to execute this technique, feeding the current maker movement. It was important to the team not to patent this discovery—as is often the pressure for scientists conducting these types of discoveries—but instead to publish their findings in a scientific journal to provide open-source access that will advance the field. “Ultimately, the way science makes progress is through people sharing discoveries,” says Freeman, adding that he hopes others will adapt the technology for their own needs.
Freeman, who worked for IBM before coming to the University of Alberta, believes that chip-based miniaturizable mechanical devices—by virtue of their small scale and superior performance—will come to replace some electronic sensors in devices like smart phones and on space exploration probes. “It’s an elegant solution to a challenging problem, simple but not obvious,” says Freeman, who has been working on the experimental challenge solved in this paper for the past two decades. “Working in condensed matter physics is like having the best seat at an awe-inspiring parade of progress.”
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Indium Corporation Earns Mexico Technology Award for New Halogen-Free Flux-Cored Wire
09/18/2025 | Indium CorporationIndium Corporation recently earned a Mexico Technology Award for its new high-reliability, halide- and halogen-free flux-cored wire, CW-807RS, which improves wetting speeds and cycle times for electronics assembly and robot soldering applications.
Blaize, Technology Control Company Partner to Power Saudi Arabia’s Next-Generation AI Innovation Infrastructure
09/17/2025 | BUSINESS WIREBlaize Holdings, Inc., a leader in programmable, energy-efficient edge AI computing, and Technology Control Company (TCC), a leading technology solutions provider in the Kingdom of Saudi Arabia (KSA), announced a strategic partnership to advance Saudi Arabia’s AI innovation infrastructure and accelerate its digital transformation goals.
BLT Joins Microchip Partner Program as Design Partner
09/17/2025 | BUSINESS WIREBLT, a U.S.-owned and operated engineering design services firm announced it has joined the Microchip Design Partner Program.
Curing and Verification in PCB Shadow Areas
09/17/2025 | Doug Katze, DymaxDesign engineers know a simple truth that often complicates electronics manufacturing: Light doesn’t go around corners. In densely populated PCBs, adhesives and coatings often fail to fully cure in shadowed regions created by tall ICs, connectors, relays, and tight housings.
On the Line With… Podcast: UHDI and RF Performance
09/17/2025 | I-Connect007I-Connect007 is excited to announce the release of a new episode in its latest On the Line with... podcast series, which shines a spotlight on one of the most important emerging innovations in electronics manufacturing: Ultra-High-Density Interconnect (UHDI).