Graphene Exhibits Electron Partitioning Process
November 20, 2015 | Osaka UniversityEstimated reading time: 2 minutes

Graphene, a single atomic layer of graphite with a carbon-layered structure, has been drawing much attention because of its abundant electronic properties and the possibilities of application due to its unique electronic structure. Andre Geim and Konstantin Novoselov extracted single-atom-thick crystallites from bulk graphite in 2004 for the first time. This results earned them the Nobel Prize in physics 2010.
A group of researchers from Osaka University, the University of Tokyo, Kyoto University, and the National Institute for Materials Science precisely examined current-fluctuation ("shot noise") in the graphene p-n junction in the Quantum Hall (QH) regime and succeeded in observing electron partitioning taking place on the region along the p-n junction as current fluctuation.
In addition, this group also clarified that electron partitioning did not take place under the absence of the p-n junction even in the QH regime.
It is expected that this group's achievement will lead to the clarification of the electron partition process in the graphene p-n junction in the QH regime because of its spin freedom and valley freedom and the realization of electron interference devices using the graphene p-n junction in the QH regime.
Kensuke Kobayashi (Professor, Graduate School of Science, Osaka University) and Sadashige Matsuo (Assistant Professor, Graduate School of Engineering, The University of Tokyo), in cooperation with research groups led by Teruo Ono (Professor, Institute for Chemical Research, Kyoto University) and Kazuhito Tsukagoshi (Research Fellow, International Center for Materials Nanoarchitectonics, National Institute for Materials Science), produced graphene samples capable of forming p-n junctions by combining gate electrodes and performed precise measurements of current-fluctuation ("shot noise") in the graphene p-n junction in the QH regime in the strong magnetic fields and at low temperatures.
As shown by Figure 1, this group clarified that while shot noise took place in the graphene p-n junction in the QH regime, shot noise did not take place in the absence of the graphene p-n junction. This group also verified that the quantity of the observed shot noise was nearly consistent with theoretical predictions.
These results directly demonstrated for the first time in the world that electron partitioning took place in the p-n junction in the QH regime, and microscopic characteristics of electron partitioning taking place in the graphene p-n junction were quantitatively established for the first time.
This research was published in the electronic version of Nature Communications (UK) on September 4, 2015. Furthermore, results closely related to this group's research results were simultaneously published in the Nature Communications by a joint group of researchers from Nippon Telegraph and Telephone Corporation (NTT) and French research institutes. The latter research was performed totally independently from the former research, thus, it is noteworthy that the world's first research results were simultaneously announced from the two separate Japanese research teams.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
PC Graphics Add-in Board Shipments Up 27% QoQ in 2Q25
09/03/2025 | Jon Peddie ResearchAccording to a new research report from the analyst firm Jon Peddie Research, the growth of the global PC-based graphics add-in board market reached 11.6 million units in Q2'25 and desktop PC CPUs shipments increased to 21.7 million units.
PC GPU Shipments Up 8.4% in 2Q25 on Pre-Tariff Demand
09/02/2025 | Jon Peddie ResearchJon Peddie Research reports the growth of the global PC-based graphics processor unit (GPU) market reached 74.7 million units in Q2'25, and PC CPU shipments increased to 66.9 million units.
20 Years of Center Nanoelectronic Technologies (CNT) – Backbone of German Semiconductor Research Celebrates Anniversary
08/14/2025 | Fraunhofer IPMSThe Center Nanoelectronic Technologies (CNT) of the Fraunhofer Institute for Photonic Microsystems (IPMS) is celebrating its 20th anniversary this year. Since its founding in 2005, it has developed into a pillar of applied semiconductor research in Germany and Europe. With its unique research cleanroom and equipment adhering to the 300-mm wafer industry standard, CNT is unparalleled in Germany and serves as a central innovation driver for the microelectronics industry.
Q2 Client CPU Shipments Increased 8% from Last Quarter, Up 13% YoY
08/13/2025 | Jon Peddie ResearchJon Peddie Research reports that the global client CPU market expanded for two quarters in a row, and in Q2’25, it showed unseasonal growth of 7.9% from last quarter, while server CPU shipments increased 22% year over year.
FuriosaAI Closes $125M Investment Round to Scale Production of Next-Gen AI Inference Chip
07/31/2025 | BUSINESS WIREFuriosaAI, a semiconductor company building a new foundation for AI compute, today announced it has completed a $125 million Series C bridge funding round. The investment continues a period of significant momentum for Furiosa as global demand for high-performance, efficient AI infrastructure soars.