Doping Powers New Thermoelectric Material
November 27, 2015 | Northwestern UniversityEstimated reading time: 3 minutes
In the production of power, nearly two-thirds of energy input from fossil fuels is lost as waste heat. Industry is hungry for materials that can convert this heat to useful electricity, but a good thermoelectric material is hard to find.
Increasing the efficiency of thermoelectric materials is essential if they are to be used commercially. Northwestern University researchers now report that doping tin selenide with sodium boosts its performance as a thermoelectric material, pushing it toward usefulness. The doped material produces a significantly greater amount of electricity than the undoped material, given the same amount of heat input.
Details of the sodium-doped tin selenide -- the most efficient thermoelectric material to date at producing electricity from waste heat -- will be published Nov. 26 by the journal Science.
The Northwestern development could lead to new thermoelectric devices with potential applications in the automobile industry, glass- and brick-making factories, refineries, coal- and gas-fired power plants, and places where large combustion engines operate continuously (such as in large ships and tankers).
Most semiconducting materials, such as silicon, have only one conduction band to work with for doping, but tin selenide is unusual and has multiple bands; the researchers took advantage of these bands. They showed they could use sodium to access these channels and send electrons quickly through the material, driving up the heat conversion efficiency.
"The secret to our material is that multiband doping produces enhanced electrical properties," said Mercouri G. Kanatzidis, an inorganic chemist who led the multidisciplinary team. "By doping multiple bands, we are able to multiply the positive effect. To increase the efficiency, we need the electrons to be as mobile as possible. Tin selenide provides us with a superhighway -- it has at least four fast-moving lanes for hole carriers instead of one congested lane."
Kanatzidis, a Charles E. and Emma H. Morrison Professor of Chemistry in the Weinberg College of Arts and Sciences, is a world leader in thermoelectric materials research. He is a corresponding author of the paper.
Page 1 of 2
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Curing and Verification in PCB Shadow Areas
09/17/2025 | Doug Katze, DymaxDesign engineers know a simple truth that often complicates electronics manufacturing: Light doesn’t go around corners. In densely populated PCBs, adhesives and coatings often fail to fully cure in shadowed regions created by tall ICs, connectors, relays, and tight housings.
Marcy’s Musings: Advancing the Advanced Materials Discussion
09/17/2025 | Marcy LaRont -- Column: Marcy's MusingsAs the industry’s most trusted global source of original content about the electronics supply chain, we continually ask you about your concerns, what you care about, and what you most want to learn about. Your responses are insightful and valuable. Thank you for caring enough to provide useful feedback and engage in dialogue.
September 2025 PCB007 Magazine: The Future of Advanced Materials
09/16/2025 | I-Connect007 Editorial TeamMoore’s Law is no more, and the advanced material solutions being developed to grapple with this reality are surprising, stunning, and perhaps a bit daunting. Buckle up for a dive into advanced materials and a glimpse into the next chapters of electronics manufacturing.
I-Connect007 Launches Advanced Electronics Packaging Digest
09/15/2025 | I-Connect007I-Connect007 is pleased to announce the launch of Advanced Electronics Packaging Digest (AEPD), a new monthly digital newsletter dedicated to one of the most critical and rapidly evolving areas of electronics manufacturing: advanced packaging at the interconnect level.
Panasonic Industry will Double the Production Capacity of MEGTRON Multi-layer Circuit Board Materials Over the Next Five Years
09/15/2025 | Panasonic Industry Co., Ltd.Panasonic Industry Co., Ltd., a Panasonic Group company, announced plans for a major expansion of its global production capacity for MEGTRON multi-layer circuit board materials today. The company plans to double its production over the next five years to meet growing demand in the AI server and ICT infrastructure markets.